reflex/tests/test_var.py
2023-08-10 09:59:03 -07:00

617 lines
16 KiB
Python

import typing
from typing import Dict, List, Set, Tuple
import cloudpickle
import pytest
from pandas import DataFrame
from reflex.base import Base
from reflex.state import State
from reflex.vars import (
BaseVar,
ComputedVar,
ImportVar,
ReflexDict,
ReflexList,
ReflexSet,
Var,
get_local_storage,
)
test_vars = [
BaseVar(name="prop1", type_=int),
BaseVar(name="key", type_=str),
BaseVar(name="value", type_=str, state="state"),
BaseVar(name="local", type_=str, state="state", is_local=True),
BaseVar(name="local2", type_=str, is_local=True),
]
test_import_vars = [ImportVar(tag="DataGrid"), ImportVar(tag="DataGrid", alias="Grid")]
class BaseState(State):
"""A Test State."""
val: str = "key"
@pytest.fixture
def TestObj():
class TestObj(Base):
foo: int
bar: str
return TestObj
@pytest.fixture
def ParentState(TestObj):
class ParentState(State):
foo: int
bar: int
@ComputedVar
def var_without_annotation(self):
return TestObj
return ParentState
@pytest.fixture
def ChildState(ParentState, TestObj):
class ChildState(ParentState):
@ComputedVar
def var_without_annotation(self):
return TestObj
return ChildState
@pytest.fixture
def GrandChildState(ChildState, TestObj):
class GrandChildState(ChildState):
@ComputedVar
def var_without_annotation(self):
return TestObj
return GrandChildState
@pytest.fixture
def StateWithAnyVar(TestObj):
class StateWithAnyVar(State):
@ComputedVar
def var_without_annotation(self) -> typing.Any:
return TestObj
return StateWithAnyVar
@pytest.fixture
def StateWithCorrectVarAnnotation():
class StateWithCorrectVarAnnotation(State):
@ComputedVar
def var_with_annotation(self) -> str:
return "Correct annotation"
return StateWithCorrectVarAnnotation
@pytest.fixture
def StateWithWrongVarAnnotation(TestObj):
class StateWithWrongVarAnnotation(State):
@ComputedVar
def var_with_annotation(self) -> str:
return TestObj
return StateWithWrongVarAnnotation
@pytest.mark.parametrize(
"prop,expected",
zip(
test_vars,
[
"prop1",
"key",
"state.value",
"state.local",
"local2",
],
),
)
def test_full_name(prop, expected):
"""Test that the full name of a var is correct.
Args:
prop: The var to test.
expected: The expected full name.
"""
assert prop.full_name == expected
@pytest.mark.parametrize(
"prop,expected",
zip(
test_vars,
["{prop1}", "{key}", "{state.value}", "state.local", "local2"],
),
)
def test_str(prop, expected):
"""Test that the string representation of a var is correct.
Args:
prop: The var to test.
expected: The expected string representation.
"""
assert str(prop) == expected
@pytest.mark.parametrize(
"prop,expected",
[
(BaseVar(name="p", type_=int), 0),
(BaseVar(name="p", type_=float), 0.0),
(BaseVar(name="p", type_=str), ""),
(BaseVar(name="p", type_=bool), False),
(BaseVar(name="p", type_=list), []),
(BaseVar(name="p", type_=dict), {}),
(BaseVar(name="p", type_=tuple), ()),
(BaseVar(name="p", type_=set), set()),
],
)
def test_default_value(prop, expected):
"""Test that the default value of a var is correct.
Args:
prop: The var to test.
expected: The expected default value.
"""
assert prop.get_default_value() == expected
@pytest.mark.parametrize(
"prop,expected",
zip(
test_vars,
[
"set_prop1",
"set_key",
"state.set_value",
"state.set_local",
"set_local2",
],
),
)
def test_get_setter(prop, expected):
"""Test that the name of the setter function of a var is correct.
Args:
prop: The var to test.
expected: The expected name of the setter function.
"""
assert prop.get_setter_name() == expected
@pytest.mark.parametrize(
"value,expected",
[
(None, None),
(1, BaseVar(name="1", type_=int, is_local=True)),
("key", BaseVar(name="key", type_=str, is_local=True)),
(3.14, BaseVar(name="3.14", type_=float, is_local=True)),
([1, 2, 3], BaseVar(name="[1, 2, 3]", type_=list, is_local=True)),
(
{"a": 1, "b": 2},
BaseVar(name='{"a": 1, "b": 2}', type_=dict, is_local=True),
),
],
)
def test_create(value, expected):
"""Test the var create function.
Args:
value: The value to create a var from.
expected: The expected name of the setter function.
"""
prop = Var.create(value)
if value is None:
assert prop == expected
else:
assert prop.equals(expected) # type: ignore
def test_create_type_error():
"""Test the var create function when inputs type error."""
class ErrorType:
pass
value = ErrorType()
with pytest.raises(TypeError) as exception:
Var.create(value)
assert (
exception.value.args[0]
== f"To create a Var must be Var or JSON-serializable. Got {value} of type {type(value)}."
)
def v(value) -> Var:
val = Var.create(value)
assert val is not None
return val
def test_basic_operations(TestObj):
"""Test the var operations.
Args:
TestObj: The test object.
"""
assert str(v(1) == v(2)) == "{(1 === 2)}"
assert str(v(1) != v(2)) == "{(1 !== 2)}"
assert str(v(1) < v(2)) == "{(1 < 2)}"
assert str(v(1) <= v(2)) == "{(1 <= 2)}"
assert str(v(1) > v(2)) == "{(1 > 2)}"
assert str(v(1) >= v(2)) == "{(1 >= 2)}"
assert str(v(1) + v(2)) == "{(1 + 2)}"
assert str(v(1) - v(2)) == "{(1 - 2)}"
assert str(v(1) * v(2)) == "{(1 * 2)}"
assert str(v(1) / v(2)) == "{(1 / 2)}"
assert str(v(1) // v(2)) == "{Math.floor(1 / 2)}"
assert str(v(1) % v(2)) == "{(1 % 2)}"
assert str(v(1) ** v(2)) == "{Math.pow(1 , 2)}"
assert str(v(1) & v(2)) == "{(1 && 2)}"
assert str(v(1) | v(2)) == "{(1 || 2)}"
assert str(v([1, 2, 3])[v(0)]) == "{[1, 2, 3].at(0)}"
assert str(v({"a": 1, "b": 2})["a"]) == '{{"a": 1, "b": 2}["a"]}'
assert (
str(BaseVar(name="foo", state="state", type_=TestObj).bar) == "{state.foo.bar}"
)
assert str(abs(v(1))) == "{Math.abs(1)}"
assert str(v([1, 2, 3]).length()) == "{[1, 2, 3].length}"
@pytest.mark.parametrize(
"var",
[
BaseVar(name="list", type_=List[int]),
BaseVar(name="tuple", type_=Tuple[int, int]),
BaseVar(name="str", type_=str),
],
)
def test_var_indexing_lists(var):
"""Test that we can index into str, list or tuple vars.
Args:
var : The str, list or tuple base var.
"""
# Test basic indexing.
assert str(var[0]) == f"{{{var.name}.at(0)}}"
assert str(var[1]) == f"{{{var.name}.at(1)}}"
# Test negative indexing.
assert str(var[-1]) == f"{{{var.name}.at(-1)}}"
@pytest.mark.parametrize(
"var, index",
[
(BaseVar(name="lst", type_=List[int]), [1, 2]),
(BaseVar(name="lst", type_=List[int]), {"name": "dict"}),
(BaseVar(name="lst", type_=List[int]), {"set"}),
(
BaseVar(name="lst", type_=List[int]),
(
1,
2,
),
),
(BaseVar(name="lst", type_=List[int]), 1.5),
(BaseVar(name="lst", type_=List[int]), "str"),
(BaseVar(name="lst", type_=List[int]), BaseVar(name="string_var", type_=str)),
(BaseVar(name="lst", type_=List[int]), BaseVar(name="float_var", type_=float)),
(
BaseVar(name="lst", type_=List[int]),
BaseVar(name="list_var", type_=List[int]),
),
(BaseVar(name="lst", type_=List[int]), BaseVar(name="set_var", type_=Set[str])),
(
BaseVar(name="lst", type_=List[int]),
BaseVar(name="dict_var", type_=Dict[str, str]),
),
(BaseVar(name="str", type_=str), [1, 2]),
(BaseVar(name="lst", type_=str), {"name": "dict"}),
(BaseVar(name="lst", type_=str), {"set"}),
(BaseVar(name="lst", type_=str), BaseVar(name="string_var", type_=str)),
(BaseVar(name="lst", type_=str), BaseVar(name="float_var", type_=float)),
(BaseVar(name="str", type_=Tuple[str]), [1, 2]),
(BaseVar(name="lst", type_=Tuple[str]), {"name": "dict"}),
(BaseVar(name="lst", type_=Tuple[str]), {"set"}),
(BaseVar(name="lst", type_=Tuple[str]), BaseVar(name="string_var", type_=str)),
(BaseVar(name="lst", type_=Tuple[str]), BaseVar(name="float_var", type_=float)),
],
)
def test_var_unsupported_indexing_lists(var, index):
"""Test unsupported indexing throws a type error.
Args:
var: The base var.
index: The base var index.
"""
with pytest.raises(TypeError):
var[index]
@pytest.mark.parametrize(
"var",
[
BaseVar(name="lst", type_=List[int]),
BaseVar(name="tuple", type_=Tuple[int, int]),
BaseVar(name="str", type_=str),
],
)
def test_var_list_slicing(var):
"""Test that we can slice into str, list or tuple vars.
Args:
var : The str, list or tuple base var.
"""
assert str(var[:1]) == f"{{{var.name}.slice(0, 1)}}"
assert str(var[:1]) == f"{{{var.name}.slice(0, 1)}}"
assert str(var[:]) == f"{{{var.name}.slice(0, undefined)}}"
def test_dict_indexing():
"""Test that we can index into dict vars."""
dct = BaseVar(name="dct", type_=Dict[str, int])
# Check correct indexing.
assert str(dct["a"]) == '{dct["a"]}'
assert str(dct["asdf"]) == '{dct["asdf"]}'
@pytest.mark.parametrize(
"var, index",
[
(
BaseVar(name="dict", type_=Dict[str, str]),
[1, 2],
),
(
BaseVar(name="dict", type_=Dict[str, str]),
{"name": "dict"},
),
(
BaseVar(name="dict", type_=Dict[str, str]),
{"set"},
),
(
BaseVar(name="dict", type_=Dict[str, str]),
(
1,
2,
),
),
(
BaseVar(name="lst", type_=Dict[str, str]),
BaseVar(name="list_var", type_=List[int]),
),
(
BaseVar(name="lst", type_=Dict[str, str]),
BaseVar(name="set_var", type_=Set[str]),
),
(
BaseVar(name="lst", type_=Dict[str, str]),
BaseVar(name="dict_var", type_=Dict[str, str]),
),
(
BaseVar(name="df", type_=DataFrame),
[1, 2],
),
(
BaseVar(name="df", type_=DataFrame),
{"name": "dict"},
),
(
BaseVar(name="df", type_=DataFrame),
{"set"},
),
(
BaseVar(name="df", type_=DataFrame),
(
1,
2,
),
),
(
BaseVar(name="df", type_=DataFrame),
BaseVar(name="list_var", type_=List[int]),
),
(
BaseVar(name="df", type_=DataFrame),
BaseVar(name="set_var", type_=Set[str]),
),
(
BaseVar(name="df", type_=DataFrame),
BaseVar(name="dict_var", type_=Dict[str, str]),
),
],
)
def test_var_unsupported_indexing_dicts(var, index):
"""Test unsupported indexing throws a type error.
Args:
var: The base var.
index: The base var index.
"""
with pytest.raises(TypeError):
var[index]
@pytest.mark.parametrize(
"fixture,full_name",
[
("ParentState", "parent_state.var_without_annotation"),
("ChildState", "parent_state.child_state.var_without_annotation"),
(
"GrandChildState",
"parent_state.child_state.grand_child_state.var_without_annotation",
),
("StateWithAnyVar", "state_with_any_var.var_without_annotation"),
],
)
def test_computed_var_without_annotation_error(request, fixture, full_name):
"""Test that a type error is thrown when an attribute of a computed var is
accessed without annotating the computed var.
Args:
request: Fixture Request.
fixture: The state fixture.
full_name: The full name of the state var.
"""
with pytest.raises(TypeError) as err:
state = request.getfixturevalue(fixture)
state.var_without_annotation.foo
assert (
err.value.args[0]
== f"You must provide an annotation for the state var `{full_name}`. Annotation cannot be `typing.Any`"
)
@pytest.mark.parametrize(
"fixture,full_name",
[
(
"StateWithCorrectVarAnnotation",
"state_with_correct_var_annotation.var_with_annotation",
),
(
"StateWithWrongVarAnnotation",
"state_with_wrong_var_annotation.var_with_annotation",
),
],
)
def test_computed_var_with_annotation_error(request, fixture, full_name):
"""Test that an Attribute error is thrown when a non-existent attribute of an annotated computed var is
accessed or when the wrong annotation is provided to a computed var.
Args:
request: Fixture Request.
fixture: The state fixture.
full_name: The full name of the state var.
"""
with pytest.raises(AttributeError) as err:
state = request.getfixturevalue(fixture)
state.var_with_annotation.foo
assert (
err.value.args[0]
== f"The State var `{full_name}` has no attribute 'foo' or may have been annotated wrongly.\n"
f"original message: 'ComputedVar' object has no attribute 'foo'"
)
def test_pickleable_rx_list():
"""Test that ReflexList is pickleable."""
rx_list = ReflexList(
original_list=[1, 2, 3], reassign_field=lambda x: x, field_name="random"
)
pickled_list = cloudpickle.dumps(rx_list)
assert cloudpickle.loads(pickled_list) == rx_list
def test_pickleable_rx_dict():
"""Test that ReflexDict is pickleable."""
rx_dict = ReflexDict(
original_dict={1: 2, 3: 4}, reassign_field=lambda x: x, field_name="random"
)
pickled_dict = cloudpickle.dumps(rx_dict)
assert cloudpickle.loads(pickled_dict) == rx_dict
def test_pickleable_rx_set():
"""Test that ReflexSet is pickleable."""
rx_set = ReflexSet(
original_set={1, 2, 3}, reassign_field=lambda x: x, field_name="random"
)
pickled_set = cloudpickle.dumps(rx_set)
assert cloudpickle.loads(pickled_set) == rx_set
@pytest.mark.parametrize(
"import_var,expected",
zip(
test_import_vars,
[
"DataGrid",
"DataGrid as Grid",
],
),
)
def test_import_var(import_var, expected):
"""Test that the import var name is computed correctly.
Args:
import_var: The import var.
expected: expected name
"""
assert import_var.name == expected
@pytest.mark.parametrize(
"key, expected",
[
("test_key", BaseVar(name="localStorage.getItem('test_key')", type_=str)),
(
BaseVar(name="key_var", type_=str),
BaseVar(name="localStorage.getItem(key_var)", type_=str),
),
(
BaseState.val,
BaseVar(name="localStorage.getItem(base_state.val)", type_=str),
),
(None, BaseVar(name="getAllLocalStorageItems()", type_=Dict)),
],
)
def test_get_local_storage(key, expected):
"""Test that the right BaseVar is return when get_local_storage is called.
Args:
key: Local storage key.
expected: expected BaseVar.
"""
local_storage = get_local_storage(key)
assert local_storage.name == expected.name
assert local_storage.type_ == expected.type_
@pytest.mark.parametrize(
"key",
[
["list", "values"],
{"name": "dict"},
10,
BaseVar(name="key_var", type_=List),
BaseVar(name="key_var", type_=Dict[str, str]),
],
)
def test_get_local_storage_raise_error(key):
"""Test that a type error is thrown when the wrong key type is provided.
Args:
key: Local storage key.
"""
with pytest.raises(TypeError) as err:
get_local_storage(key)
type_ = type(key) if not isinstance(key, Var) else key.type_
assert (
err.value.args[0]
== f"Local storage keys can only be of type `str` or `var` of type `str`. Got `{type_}` instead."
)