reflex/reflex/components/datadisplay/datatable.py
Masen Furer 18bddfb7e7
WiP
2023-12-14 14:53:20 -08:00

132 lines
4.2 KiB
Python

"""Table components."""
from __future__ import annotations
from typing import Any, Dict, List, Union
from reflex.components.component import Component
from reflex.components.tags import Tag
from reflex.utils import imports, types
from reflex.utils.serializers import serialize
from reflex.vars import BaseVar, ComputedVar, Var
class Gridjs(Component):
"""A component that wraps a nivo bar component."""
library: str = "gridjs-react@6.0.1"
lib_dependencies: List[str] = ["gridjs@6.0.6"]
class DataTable(Gridjs):
"""A data table component."""
tag: str = "Grid"
alias: str = "DataTableGrid"
# The data to display. Either a list of lists or a pandas dataframe.
data: Any
# The list of columns to display. Required if data is a list and should not be provided
# if the data field is a dataframe
columns: Var[List]
# Enable a search bar.
search: Var[bool]
# Enable sorting on columns.
sort: Var[bool]
# Enable resizable columns.
resizable: Var[bool]
# Enable pagination.
pagination: Var[Union[bool, Dict]]
@classmethod
def create(cls, *children, **props):
"""Create a datatable component.
Args:
*children: The children of the component.
**props: The props to pass to the component.
Returns:
The datatable component.
Raises:
ValueError: If a pandas dataframe is passed in and columns are also provided.
"""
data = props.get("data")
columns = props.get("columns")
# The annotation should be provided if data is a computed var. We need this to know how to
# render pandas dataframes.
if isinstance(data, ComputedVar) and data._var_type == Any:
raise ValueError(
"Annotation of the computed var assigned to the data field should be provided."
)
if (
columns is not None
and isinstance(columns, ComputedVar)
and columns._var_type == Any
):
raise ValueError(
"Annotation of the computed var assigned to the column field should be provided."
)
# If data is a pandas dataframe and columns are provided throw an error.
if (
types.is_dataframe(type(data))
or (isinstance(data, Var) and types.is_dataframe(data._var_type))
) and columns is not None:
raise ValueError(
"Cannot pass in both a pandas dataframe and columns to the data_table component."
)
# If data is a list and columns are not provided, throw an error
if (
(isinstance(data, Var) and types._issubclass(data._var_type, List))
or issubclass(type(data), List)
) and columns is None:
raise ValueError(
"column field should be specified when the data field is a list type"
)
# Create the component.
return super().create(
*children,
**props,
)
def _get_imports(self) -> imports.ImportDict:
return imports.merge_imports(
super()._get_imports(),
{"": {imports.ImportVar(tag="gridjs/dist/theme/mermaid.css")}},
)
def _render(self) -> Tag:
if isinstance(self.data, Var) and types.is_dataframe(self.data._var_type):
self.columns = BaseVar(
_var_name=f"{self.data._var_name}.columns",
_var_type=List[Any],
_var_full_name_needs_state_prefix=True,
)._replace(merge_var_data=self.data._var_data)
self.data = BaseVar(
_var_name=f"{self.data._var_name}.data",
_var_type=List[List[Any]],
_var_full_name_needs_state_prefix=True,
)._replace(merge_var_data=self.data._var_data)
if types.is_dataframe(type(self.data)):
# If given a pandas df break up the data and columns
data = serialize(self.data)
assert isinstance(data, dict), "Serialized dataframe should be a dict."
self.columns = Var.create_safe(data["columns"])
self.data = Var.create_safe(data["data"])
# Render the table.
return super()._render()