1880 lines
58 KiB
Python
1880 lines
58 KiB
Python
"""Collection of base classes."""
|
|
|
|
from __future__ import annotations
|
|
|
|
import contextlib
|
|
import dataclasses
|
|
import datetime
|
|
import dis
|
|
import functools
|
|
import inspect
|
|
import json
|
|
import sys
|
|
import warnings
|
|
from types import CodeType, FunctionType
|
|
from typing import (
|
|
TYPE_CHECKING,
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Generic,
|
|
List,
|
|
Literal,
|
|
NoReturn,
|
|
Optional,
|
|
Set,
|
|
Tuple,
|
|
Type,
|
|
TypeVar,
|
|
Union,
|
|
cast,
|
|
get_args,
|
|
overload,
|
|
)
|
|
|
|
from typing_extensions import ParamSpec, get_type_hints, override
|
|
|
|
from reflex import constants
|
|
from reflex.base import Base
|
|
from reflex.constants.colors import Color
|
|
from reflex.utils import console, imports, serializers, types
|
|
from reflex.utils.exceptions import VarDependencyError, VarTypeError, VarValueError
|
|
from reflex.utils.format import format_state_name
|
|
from reflex.utils.types import get_origin
|
|
from reflex.vars import (
|
|
ComputedVar,
|
|
ImmutableVarData,
|
|
Var,
|
|
VarData,
|
|
_decode_var_immutable,
|
|
_extract_var_data,
|
|
_global_vars,
|
|
)
|
|
|
|
if TYPE_CHECKING:
|
|
from reflex.state import BaseState
|
|
|
|
from .function import FunctionVar, ToFunctionOperation
|
|
from .number import (
|
|
BooleanVar,
|
|
NumberVar,
|
|
ToBooleanVarOperation,
|
|
ToNumberVarOperation,
|
|
)
|
|
from .object import ObjectVar, ToObjectOperation
|
|
from .sequence import ArrayVar, StringVar, ToArrayOperation, ToStringOperation
|
|
|
|
|
|
VAR_TYPE = TypeVar("VAR_TYPE")
|
|
|
|
|
|
@dataclasses.dataclass(
|
|
eq=False,
|
|
frozen=True,
|
|
**{"slots": True} if sys.version_info >= (3, 10) else {},
|
|
)
|
|
class ImmutableVar(Var, Generic[VAR_TYPE]):
|
|
"""Base class for immutable vars."""
|
|
|
|
# The name of the var.
|
|
_var_name: str = dataclasses.field()
|
|
|
|
# The type of the var.
|
|
_var_type: types.GenericType = dataclasses.field(default=Any)
|
|
|
|
# Extra metadata associated with the Var
|
|
_var_data: Optional[ImmutableVarData] = dataclasses.field(default=None)
|
|
|
|
def __str__(self) -> str:
|
|
"""String representation of the var. Guaranteed to be a valid Javascript expression.
|
|
|
|
Returns:
|
|
The name of the var.
|
|
"""
|
|
return self._var_name
|
|
|
|
@property
|
|
def _var_is_local(self) -> bool:
|
|
"""Whether this is a local javascript variable.
|
|
|
|
Returns:
|
|
False
|
|
"""
|
|
return False
|
|
|
|
@property
|
|
def _var_is_string(self) -> bool:
|
|
"""Whether the var is a string literal.
|
|
|
|
Returns:
|
|
False
|
|
"""
|
|
return False
|
|
|
|
@property
|
|
def _var_full_name_needs_state_prefix(self) -> bool:
|
|
"""Whether the full name of the var needs a _var_state prefix.
|
|
|
|
Returns:
|
|
False
|
|
"""
|
|
return False
|
|
|
|
def __post_init__(self):
|
|
"""Post-initialize the var."""
|
|
# Decode any inline Var markup and apply it to the instance
|
|
_var_data, _var_name = _decode_var_immutable(self._var_name)
|
|
|
|
if _var_data or _var_name != self._var_name:
|
|
self.__init__(
|
|
_var_name=_var_name,
|
|
_var_type=self._var_type,
|
|
_var_data=ImmutableVarData.merge(self._var_data, _var_data),
|
|
)
|
|
|
|
def __hash__(self) -> int:
|
|
"""Define a hash function for the var.
|
|
|
|
Returns:
|
|
The hash of the var.
|
|
"""
|
|
return hash((self._var_name, self._var_type, self._var_data))
|
|
|
|
def _get_all_var_data(self) -> ImmutableVarData | None:
|
|
"""Get all VarData associated with the Var.
|
|
|
|
Returns:
|
|
The VarData of the components and all of its children.
|
|
"""
|
|
return self._var_data
|
|
|
|
def _replace(self, merge_var_data=None, **kwargs: Any):
|
|
"""Make a copy of this Var with updated fields.
|
|
|
|
Args:
|
|
merge_var_data: VarData to merge into the existing VarData.
|
|
**kwargs: Var fields to update.
|
|
|
|
Returns:
|
|
A new ImmutableVar with the updated fields overwriting the corresponding fields in this Var.
|
|
|
|
Raises:
|
|
TypeError: If _var_is_local, _var_is_string, or _var_full_name_needs_state_prefix is not None.
|
|
"""
|
|
if kwargs.get("_var_is_local", False) is not False:
|
|
raise TypeError(
|
|
"The _var_is_local argument is not supported for ImmutableVar."
|
|
)
|
|
|
|
if kwargs.get("_var_is_string", False) is not False:
|
|
raise TypeError(
|
|
"The _var_is_string argument is not supported for ImmutableVar."
|
|
)
|
|
|
|
if kwargs.get("_var_full_name_needs_state_prefix", False) is not False:
|
|
raise TypeError(
|
|
"The _var_full_name_needs_state_prefix argument is not supported for ImmutableVar."
|
|
)
|
|
|
|
return dataclasses.replace(
|
|
self,
|
|
_var_data=ImmutableVarData.merge(
|
|
kwargs.get("_var_data", self._var_data), merge_var_data
|
|
),
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def create(
|
|
cls,
|
|
value: Any,
|
|
_var_is_local: bool | None = None,
|
|
_var_is_string: bool | None = None,
|
|
_var_data: VarData | None = None,
|
|
) -> ImmutableVar | Var | None:
|
|
"""Create a var from a value.
|
|
|
|
Args:
|
|
value: The value to create the var from.
|
|
_var_is_local: Whether the var is local. Deprecated.
|
|
_var_is_string: Whether the var is a string literal. Deprecated.
|
|
_var_data: Additional hooks and imports associated with the Var.
|
|
|
|
Returns:
|
|
The var.
|
|
|
|
Raises:
|
|
VarTypeError: If the value is JSON-unserializable.
|
|
TypeError: If _var_is_local or _var_is_string is not None.
|
|
"""
|
|
if _var_is_local is not None:
|
|
raise TypeError(
|
|
"The _var_is_local argument is not supported for ImmutableVar."
|
|
)
|
|
|
|
if _var_is_string is not None:
|
|
raise TypeError(
|
|
"The _var_is_string argument is not supported for ImmutableVar."
|
|
)
|
|
|
|
from reflex.utils import format
|
|
|
|
# Check for none values.
|
|
if value is None:
|
|
return None
|
|
|
|
# If the value is already a var, do nothing.
|
|
if isinstance(value, Var):
|
|
return value
|
|
|
|
# Try to pull the imports and hooks from contained values.
|
|
if not isinstance(value, str):
|
|
_var_data = VarData.merge(*_extract_var_data(value), _var_data)
|
|
|
|
# Try to serialize the value.
|
|
type_ = type(value)
|
|
if type_ in types.JSONType:
|
|
name = value
|
|
else:
|
|
name, _serialized_type = serializers.serialize(value, get_type=True)
|
|
if name is None:
|
|
raise VarTypeError(
|
|
f"No JSON serializer found for var {value} of type {type_}."
|
|
)
|
|
name = name if isinstance(name, str) else format.json_dumps(name)
|
|
|
|
return cls(
|
|
_var_name=name,
|
|
_var_type=type_,
|
|
_var_data=(
|
|
ImmutableVarData(
|
|
state=_var_data.state,
|
|
imports=_var_data.imports,
|
|
hooks=_var_data.hooks,
|
|
)
|
|
if _var_data
|
|
else None
|
|
),
|
|
)
|
|
|
|
@classmethod
|
|
def create_safe(
|
|
cls,
|
|
value: Any,
|
|
_var_is_local: bool | None = None,
|
|
_var_is_string: bool | None = None,
|
|
_var_data: VarData | None = None,
|
|
) -> Var | ImmutableVar:
|
|
"""Create a var from a value, asserting that it is not None.
|
|
|
|
Args:
|
|
value: The value to create the var from.
|
|
_var_is_local: Whether the var is local. Deprecated.
|
|
_var_is_string: Whether the var is a string literal. Deprecated.
|
|
_var_data: Additional hooks and imports associated with the Var.
|
|
|
|
Returns:
|
|
The var.
|
|
"""
|
|
var = cls.create(
|
|
value,
|
|
_var_is_local=_var_is_local,
|
|
_var_is_string=_var_is_string,
|
|
_var_data=_var_data,
|
|
)
|
|
assert var is not None
|
|
return var
|
|
|
|
def __format__(self, format_spec: str) -> str:
|
|
"""Format the var into a Javascript equivalent to an f-string.
|
|
|
|
Args:
|
|
format_spec: The format specifier (Ignored for now).
|
|
|
|
Returns:
|
|
The formatted var.
|
|
"""
|
|
hashed_var = hash(self)
|
|
|
|
_global_vars[hashed_var] = self
|
|
|
|
# Encode the _var_data into the formatted output for tracking purposes.
|
|
return f"{constants.REFLEX_VAR_OPENING_TAG}{hashed_var}{constants.REFLEX_VAR_CLOSING_TAG}{self._var_name}"
|
|
|
|
@overload
|
|
def to(
|
|
self, output: Type[NumberVar], var_type: type[int] | type[float] = float
|
|
) -> ToNumberVarOperation: ...
|
|
|
|
@overload
|
|
def to(self, output: Type[BooleanVar]) -> ToBooleanVarOperation: ...
|
|
|
|
@overload
|
|
def to(
|
|
self,
|
|
output: Type[ArrayVar],
|
|
var_type: type[list] | type[tuple] | type[set] = list,
|
|
) -> ToArrayOperation: ...
|
|
|
|
@overload
|
|
def to(self, output: Type[StringVar]) -> ToStringOperation: ...
|
|
|
|
@overload
|
|
def to(
|
|
self, output: Type[ObjectVar], var_type: types.GenericType = dict
|
|
) -> ToObjectOperation: ...
|
|
|
|
@overload
|
|
def to(
|
|
self, output: Type[FunctionVar], var_type: Type[Callable] = Callable
|
|
) -> ToFunctionOperation: ...
|
|
|
|
@overload
|
|
def to(
|
|
self,
|
|
output: Type[OUTPUT] | types.GenericType,
|
|
var_type: types.GenericType | None = None,
|
|
) -> OUTPUT: ...
|
|
|
|
def to(
|
|
self,
|
|
output: Type[OUTPUT] | types.GenericType,
|
|
var_type: types.GenericType | None = None,
|
|
) -> Var:
|
|
"""Convert the var to a different type.
|
|
|
|
Args:
|
|
output: The output type.
|
|
var_type: The type of the var.
|
|
|
|
Raises:
|
|
TypeError: If the var_type is not a supported type for the output.
|
|
|
|
Returns:
|
|
The converted var.
|
|
"""
|
|
from .function import FunctionVar, ToFunctionOperation
|
|
from .number import (
|
|
BooleanVar,
|
|
NumberVar,
|
|
ToBooleanVarOperation,
|
|
ToNumberVarOperation,
|
|
)
|
|
from .object import ObjectVar, ToObjectOperation
|
|
from .sequence import ArrayVar, StringVar, ToArrayOperation, ToStringOperation
|
|
|
|
base_type = var_type
|
|
if types.is_optional(base_type):
|
|
base_type = types.get_args(base_type)[0]
|
|
|
|
fixed_type = get_origin(base_type) or base_type
|
|
|
|
fixed_output_type = get_origin(output) or output
|
|
|
|
# If the first argument is a python type, we map it to the corresponding Var type.
|
|
if fixed_output_type is dict:
|
|
return self.to(ObjectVar, output)
|
|
if fixed_output_type in (list, tuple, set):
|
|
return self.to(ArrayVar, output)
|
|
if fixed_output_type in (int, float):
|
|
return self.to(NumberVar, output)
|
|
if fixed_output_type is str:
|
|
return self.to(StringVar, output)
|
|
if fixed_output_type is bool:
|
|
return self.to(BooleanVar, output)
|
|
|
|
if issubclass(output, NumberVar):
|
|
if fixed_type is not None:
|
|
if fixed_type is Union:
|
|
inner_types = get_args(base_type)
|
|
if not all(issubclass(t, (int, float)) for t in inner_types):
|
|
raise TypeError(
|
|
f"Unsupported type {var_type} for NumberVar. Must be int or float."
|
|
)
|
|
|
|
elif not issubclass(fixed_type, (int, float)):
|
|
raise TypeError(
|
|
f"Unsupported type {var_type} for NumberVar. Must be int or float."
|
|
)
|
|
return ToNumberVarOperation.create(self, var_type or float)
|
|
|
|
if issubclass(output, BooleanVar):
|
|
return ToBooleanVarOperation.create(self)
|
|
|
|
if issubclass(output, ArrayVar):
|
|
if fixed_type is not None and not issubclass(
|
|
fixed_type, (list, tuple, set)
|
|
):
|
|
raise TypeError(
|
|
f"Unsupported type {var_type} for ArrayVar. Must be list, tuple, or set."
|
|
)
|
|
return ToArrayOperation.create(self, var_type or list)
|
|
|
|
if issubclass(output, StringVar):
|
|
return ToStringOperation.create(self)
|
|
|
|
if issubclass(output, (ObjectVar, Base)):
|
|
return ToObjectOperation.create(self, var_type or dict)
|
|
|
|
if issubclass(output, FunctionVar):
|
|
# if fixed_type is not None and not issubclass(fixed_type, Callable):
|
|
# raise TypeError(
|
|
# f"Unsupported type {var_type} for FunctionVar. Must be Callable."
|
|
# )
|
|
return ToFunctionOperation.create(self, var_type or Callable)
|
|
|
|
# If we can't determine the first argument, we just replace the _var_type.
|
|
if not issubclass(output, Var) or var_type is None:
|
|
return dataclasses.replace(
|
|
self,
|
|
_var_type=output,
|
|
)
|
|
|
|
# We couldn't determine the output type to be any other Var type, so we replace the _var_type.
|
|
if var_type is not None:
|
|
return dataclasses.replace(
|
|
self,
|
|
_var_type=var_type,
|
|
)
|
|
|
|
return self
|
|
|
|
def guess_type(self) -> ImmutableVar:
|
|
"""Guesses the type of the variable based on its `_var_type` attribute.
|
|
|
|
Returns:
|
|
ImmutableVar: The guessed type of the variable.
|
|
|
|
Raises:
|
|
TypeError: If the type is not supported for guessing.
|
|
"""
|
|
from .number import BooleanVar, NumberVar
|
|
from .object import ObjectVar
|
|
from .sequence import ArrayVar, StringVar
|
|
|
|
var_type = self._var_type
|
|
if types.is_optional(var_type):
|
|
var_type = types.get_args(var_type)[0]
|
|
|
|
if var_type is Any:
|
|
return self
|
|
|
|
fixed_type = get_origin(var_type) or var_type
|
|
|
|
if fixed_type is Union:
|
|
inner_types = get_args(var_type)
|
|
if int in inner_types and float in inner_types:
|
|
return self.to(NumberVar, self._var_type)
|
|
return self
|
|
|
|
if not inspect.isclass(fixed_type):
|
|
raise TypeError(f"Unsupported type {var_type} for guess_type.")
|
|
|
|
if issubclass(fixed_type, bool):
|
|
return self.to(BooleanVar, self._var_type)
|
|
if issubclass(fixed_type, (int, float)):
|
|
return self.to(NumberVar, self._var_type)
|
|
if issubclass(fixed_type, dict):
|
|
return self.to(ObjectVar, self._var_type)
|
|
if issubclass(fixed_type, (list, tuple, set)):
|
|
return self.to(ArrayVar, self._var_type)
|
|
if issubclass(fixed_type, str):
|
|
return self.to(StringVar)
|
|
if issubclass(fixed_type, Base):
|
|
return self.to(ObjectVar, self._var_type)
|
|
return self
|
|
|
|
def get_default_value(self) -> Any:
|
|
"""Get the default value of the var.
|
|
|
|
Returns:
|
|
The default value of the var.
|
|
|
|
Raises:
|
|
ImportError: If the var is a dataframe and pandas is not installed.
|
|
"""
|
|
if types.is_optional(self._var_type):
|
|
return None
|
|
|
|
type_ = (
|
|
get_origin(self._var_type)
|
|
if types.is_generic_alias(self._var_type)
|
|
else self._var_type
|
|
)
|
|
if type_ is Literal:
|
|
args = get_args(self._var_type)
|
|
return args[0] if args else None
|
|
if issubclass(type_, str):
|
|
return ""
|
|
if issubclass(type_, types.get_args(Union[int, float])):
|
|
return 0
|
|
if issubclass(type_, bool):
|
|
return False
|
|
if issubclass(type_, list):
|
|
return []
|
|
if issubclass(type_, dict):
|
|
return {}
|
|
if issubclass(type_, tuple):
|
|
return ()
|
|
if types.is_dataframe(type_):
|
|
try:
|
|
import pandas as pd
|
|
|
|
return pd.DataFrame()
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Please install pandas to use dataframes in your app."
|
|
) from e
|
|
return set() if issubclass(type_, set) else None
|
|
|
|
def get_setter_name(self, include_state: bool = True) -> str:
|
|
"""Get the name of the var's generated setter function.
|
|
|
|
Args:
|
|
include_state: Whether to include the state name in the setter name.
|
|
|
|
Returns:
|
|
The name of the setter function.
|
|
"""
|
|
var_name_parts = self._var_name.split(".")
|
|
setter = constants.SETTER_PREFIX + var_name_parts[-1]
|
|
if self._var_data is None:
|
|
return setter
|
|
if not include_state or self._var_data.state == "":
|
|
return setter
|
|
return ".".join((self._var_data.state, setter))
|
|
|
|
def get_setter(self) -> Callable[[BaseState, Any], None]:
|
|
"""Get the var's setter function.
|
|
|
|
Returns:
|
|
A function that that creates a setter for the var.
|
|
"""
|
|
actual_name = self._var_name.split(".")[-1]
|
|
|
|
def setter(state: BaseState, value: Any):
|
|
"""Get the setter for the var.
|
|
|
|
Args:
|
|
state: The state within which we add the setter function.
|
|
value: The value to set.
|
|
"""
|
|
if self._var_type in [int, float]:
|
|
try:
|
|
value = self._var_type(value)
|
|
setattr(state, actual_name, value)
|
|
except ValueError:
|
|
console.debug(
|
|
f"{type(state).__name__}.{self._var_name}: Failed conversion of {value} to '{self._var_type.__name__}'. Value not set.",
|
|
)
|
|
else:
|
|
setattr(state, actual_name, value)
|
|
|
|
setter.__qualname__ = self.get_setter_name()
|
|
|
|
return setter
|
|
|
|
def __eq__(self, other: Var | Any) -> BooleanVar:
|
|
"""Check if the current variable is equal to the given variable.
|
|
|
|
Args:
|
|
other (Var | Any): The variable to compare with.
|
|
|
|
Returns:
|
|
BooleanVar: A BooleanVar object representing the result of the equality check.
|
|
"""
|
|
from .number import equal_operation
|
|
|
|
return equal_operation(self, other)
|
|
|
|
def __ne__(self, other: Var | Any) -> BooleanVar:
|
|
"""Check if the current object is not equal to the given object.
|
|
|
|
Parameters:
|
|
other (Var | Any): The object to compare with.
|
|
|
|
Returns:
|
|
BooleanVar: A BooleanVar object representing the result of the comparison.
|
|
"""
|
|
from .number import equal_operation
|
|
|
|
return ~equal_operation(self, other)
|
|
|
|
def __gt__(self, other: Var | Any) -> BooleanVar:
|
|
"""Compare the current instance with another variable and return a BooleanVar representing the result of the greater than operation.
|
|
|
|
Args:
|
|
other (Var | Any): The variable to compare with.
|
|
|
|
Returns:
|
|
BooleanVar: A BooleanVar representing the result of the greater than operation.
|
|
"""
|
|
from .number import greater_than_operation
|
|
|
|
return greater_than_operation(self, other)
|
|
|
|
def __ge__(self, other: Var | Any) -> BooleanVar:
|
|
"""Check if the value of this variable is greater than or equal to the value of another variable or object.
|
|
|
|
Args:
|
|
other (Var | Any): The variable or object to compare with.
|
|
|
|
Returns:
|
|
BooleanVar: A BooleanVar object representing the result of the comparison.
|
|
"""
|
|
from .number import greater_than_or_equal_operation
|
|
|
|
return greater_than_or_equal_operation(self, other)
|
|
|
|
def __lt__(self, other: Var | Any) -> BooleanVar:
|
|
"""Compare the current instance with another variable using the less than (<) operator.
|
|
|
|
Args:
|
|
other: The variable to compare with.
|
|
|
|
Returns:
|
|
A `BooleanVar` object representing the result of the comparison.
|
|
"""
|
|
from .number import less_than_operation
|
|
|
|
return less_than_operation(self, other)
|
|
|
|
def __le__(self, other: Var | Any) -> BooleanVar:
|
|
"""Compare if the current instance is less than or equal to the given value.
|
|
|
|
Args:
|
|
other: The value to compare with.
|
|
|
|
Returns:
|
|
A BooleanVar object representing the result of the comparison.
|
|
"""
|
|
from .number import less_than_or_equal_operation
|
|
|
|
return less_than_or_equal_operation(self, other)
|
|
|
|
def bool(self) -> BooleanVar:
|
|
"""Convert the var to a boolean.
|
|
|
|
Returns:
|
|
The boolean var.
|
|
"""
|
|
from .number import boolify
|
|
|
|
return boolify(self)
|
|
|
|
def __and__(self, other: Var | Any) -> ImmutableVar:
|
|
"""Perform a logical AND operation on the current instance and another variable.
|
|
|
|
Args:
|
|
other: The variable to perform the logical AND operation with.
|
|
|
|
Returns:
|
|
A `BooleanVar` object representing the result of the logical AND operation.
|
|
"""
|
|
return and_operation(self, other)
|
|
|
|
def __rand__(self, other: Var | Any) -> ImmutableVar:
|
|
"""Perform a logical AND operation on the current instance and another variable.
|
|
|
|
Args:
|
|
other: The variable to perform the logical AND operation with.
|
|
|
|
Returns:
|
|
A `BooleanVar` object representing the result of the logical AND operation.
|
|
"""
|
|
return and_operation(other, self)
|
|
|
|
def __or__(self, other: Var | Any) -> ImmutableVar:
|
|
"""Perform a logical OR operation on the current instance and another variable.
|
|
|
|
Args:
|
|
other: The variable to perform the logical OR operation with.
|
|
|
|
Returns:
|
|
A `BooleanVar` object representing the result of the logical OR operation.
|
|
"""
|
|
return or_operation(self, other)
|
|
|
|
def __ror__(self, other: Var | Any) -> ImmutableVar:
|
|
"""Perform a logical OR operation on the current instance and another variable.
|
|
|
|
Args:
|
|
other: The variable to perform the logical OR operation with.
|
|
|
|
Returns:
|
|
A `BooleanVar` object representing the result of the logical OR operation.
|
|
"""
|
|
return or_operation(other, self)
|
|
|
|
def __invert__(self) -> BooleanVar:
|
|
"""Perform a logical NOT operation on the current instance.
|
|
|
|
Returns:
|
|
A `BooleanVar` object representing the result of the logical NOT operation.
|
|
"""
|
|
return ~self.bool()
|
|
|
|
def to_string(self) -> ImmutableVar:
|
|
"""Convert the var to a string.
|
|
|
|
Returns:
|
|
The string var.
|
|
"""
|
|
from .function import JSON_STRINGIFY
|
|
from .sequence import StringVar
|
|
|
|
return JSON_STRINGIFY.call(self).to(StringVar)
|
|
|
|
def as_ref(self) -> ImmutableVar:
|
|
"""Get a reference to the var.
|
|
|
|
Returns:
|
|
The reference to the var.
|
|
"""
|
|
from .object import ObjectVar
|
|
|
|
refs = ImmutableVar(
|
|
_var_name="refs",
|
|
_var_data=ImmutableVarData(
|
|
imports={
|
|
f"/{constants.Dirs.STATE_PATH}": [imports.ImportVar(tag="refs")]
|
|
}
|
|
),
|
|
).to(ObjectVar)
|
|
return refs[LiteralVar.create(str(self))]
|
|
|
|
def _type(self) -> StringVar:
|
|
"""Returns the type of the object.
|
|
|
|
This method uses the `typeof` function from the `FunctionStringVar` class
|
|
to determine the type of the object.
|
|
|
|
Returns:
|
|
StringVar: A string variable representing the type of the object.
|
|
"""
|
|
from .function import FunctionStringVar
|
|
from .sequence import StringVar
|
|
|
|
type_of = FunctionStringVar("typeof")
|
|
return type_of.call(self).to(StringVar)
|
|
|
|
|
|
OUTPUT = TypeVar("OUTPUT", bound=ImmutableVar)
|
|
|
|
|
|
class LiteralVar(ImmutableVar):
|
|
"""Base class for immutable literal vars."""
|
|
|
|
@classmethod
|
|
def create(
|
|
cls,
|
|
value: Any,
|
|
_var_data: VarData | None = None,
|
|
) -> Var:
|
|
"""Create a var from a value.
|
|
|
|
Args:
|
|
value: The value to create the var from.
|
|
_var_data: Additional hooks and imports associated with the Var.
|
|
|
|
Returns:
|
|
The var.
|
|
|
|
Raises:
|
|
TypeError: If the value is not a supported type for LiteralVar.
|
|
"""
|
|
from .number import LiteralBooleanVar, LiteralNumberVar
|
|
from .object import LiteralObjectVar
|
|
from .sequence import LiteralArrayVar, LiteralStringVar
|
|
|
|
if isinstance(value, Var):
|
|
if _var_data is None:
|
|
return value
|
|
return value._replace(merge_var_data=_var_data)
|
|
|
|
if isinstance(value, str):
|
|
return LiteralStringVar.create(value, _var_data=_var_data)
|
|
|
|
if isinstance(value, bool):
|
|
return LiteralBooleanVar.create(value, _var_data=_var_data)
|
|
|
|
if isinstance(value, (int, float)):
|
|
return LiteralNumberVar.create(value, _var_data=_var_data)
|
|
|
|
if isinstance(value, dict):
|
|
return LiteralObjectVar.create(value, _var_data=_var_data)
|
|
|
|
if isinstance(value, Color):
|
|
return LiteralStringVar.create(f"{value}", _var_data=_var_data)
|
|
|
|
if isinstance(value, (list, tuple, set)):
|
|
return LiteralArrayVar.create(value, _var_data=_var_data)
|
|
|
|
if value is None:
|
|
return ImmutableVar.create_safe("null", _var_data=_var_data)
|
|
|
|
from reflex.event import EventChain, EventSpec
|
|
from reflex.utils.format import get_event_handler_parts
|
|
|
|
from .function import ArgsFunctionOperation, FunctionStringVar
|
|
from .object import LiteralObjectVar
|
|
|
|
if isinstance(value, EventSpec):
|
|
event_name = LiteralVar.create(
|
|
".".join(filter(None, get_event_handler_parts(value.handler)))
|
|
)
|
|
event_args = LiteralVar.create(
|
|
{str(name): value for name, value in value.args}
|
|
)
|
|
event_client_name = LiteralVar.create(value.client_handler_name)
|
|
return FunctionStringVar("Event").call(
|
|
event_name,
|
|
event_args,
|
|
*([event_client_name] if value.client_handler_name else []),
|
|
)
|
|
|
|
if isinstance(value, EventChain):
|
|
sig = inspect.signature(value.args_spec) # type: ignore
|
|
if sig.parameters:
|
|
arg_def = tuple((f"_{p}" for p in sig.parameters))
|
|
arg_def_expr = LiteralVar.create(
|
|
[ImmutableVar.create_safe(arg) for arg in arg_def]
|
|
)
|
|
else:
|
|
# add a default argument for addEvents if none were specified in value.args_spec
|
|
# used to trigger the preventDefault() on the event.
|
|
arg_def = ("...args",)
|
|
arg_def_expr = ImmutableVar.create_safe("args")
|
|
|
|
return ArgsFunctionOperation.create(
|
|
arg_def,
|
|
FunctionStringVar.create("addEvents").call(
|
|
LiteralVar.create(
|
|
[LiteralVar.create(event) for event in value.events]
|
|
),
|
|
arg_def_expr,
|
|
LiteralVar.create(value.event_actions),
|
|
),
|
|
)
|
|
|
|
try:
|
|
from plotly.graph_objects import Figure, layout
|
|
from plotly.io import to_json
|
|
|
|
if isinstance(value, Figure):
|
|
return LiteralObjectVar.create(
|
|
json.loads(str(to_json(value))),
|
|
_var_type=Figure,
|
|
_var_data=_var_data,
|
|
)
|
|
|
|
if isinstance(value, layout.Template):
|
|
return LiteralObjectVar.create(
|
|
{
|
|
"data": json.loads(str(to_json(value.data))),
|
|
"layout": json.loads(str(to_json(value.layout))),
|
|
},
|
|
_var_type=layout.Template,
|
|
_var_data=_var_data,
|
|
)
|
|
except ImportError:
|
|
pass
|
|
|
|
try:
|
|
import base64
|
|
import io
|
|
|
|
from PIL.Image import MIME
|
|
from PIL.Image import Image as Img
|
|
|
|
if isinstance(value, Img):
|
|
with io.BytesIO() as buffer:
|
|
image_format = getattr(value, "format", None) or "PNG"
|
|
value.save(buffer, format=image_format)
|
|
try:
|
|
# Newer method to get the mime type, but does not always work.
|
|
mimetype = value.get_format_mimetype() # type: ignore
|
|
except AttributeError:
|
|
try:
|
|
# Fallback method
|
|
mimetype = MIME[image_format]
|
|
except KeyError:
|
|
# Unknown mime_type: warn and return image/png and hope the browser can sort it out.
|
|
warnings.warn( # noqa: B028
|
|
f"Unknown mime type for {value} {image_format}. Defaulting to image/png"
|
|
)
|
|
mimetype = "image/png"
|
|
return LiteralStringVar.create(
|
|
f"data:{mimetype};base64,{base64.b64encode(buffer.getvalue()).decode()}",
|
|
_var_data=_var_data,
|
|
)
|
|
except ImportError:
|
|
pass
|
|
|
|
if isinstance(value, Base):
|
|
return LiteralObjectVar.create(
|
|
{k: (None if callable(v) else v) for k, v in value.dict().items()},
|
|
_var_type=type(value),
|
|
_var_data=_var_data,
|
|
)
|
|
|
|
raise TypeError(
|
|
f"Unsupported type {type(value)} for LiteralVar. Tried to create a LiteralVar from {value}."
|
|
)
|
|
|
|
def __post_init__(self):
|
|
"""Post-initialize the var."""
|
|
|
|
def json(self) -> str:
|
|
"""Serialize the var to a JSON string.
|
|
|
|
Raises:
|
|
NotImplementedError: If the method is not implemented.
|
|
"""
|
|
raise NotImplementedError(
|
|
"LiteralVar subclasses must implement the json method."
|
|
)
|
|
|
|
|
|
P = ParamSpec("P")
|
|
T = TypeVar("T")
|
|
|
|
|
|
# NoReturn is used to match CustomVarOperationReturn with no type hint.
|
|
@overload
|
|
def var_operation(
|
|
func: Callable[P, CustomVarOperationReturn[NoReturn]],
|
|
) -> Callable[P, ImmutableVar]: ...
|
|
|
|
|
|
@overload
|
|
def var_operation(
|
|
func: Callable[P, CustomVarOperationReturn[bool]],
|
|
) -> Callable[P, BooleanVar]: ...
|
|
|
|
|
|
NUMBER_T = TypeVar("NUMBER_T", int, float, Union[int, float])
|
|
|
|
|
|
@overload
|
|
def var_operation(
|
|
func: Callable[P, CustomVarOperationReturn[NUMBER_T]],
|
|
) -> Callable[P, NumberVar[NUMBER_T]]: ...
|
|
|
|
|
|
@overload
|
|
def var_operation(
|
|
func: Callable[P, CustomVarOperationReturn[str]],
|
|
) -> Callable[P, StringVar]: ...
|
|
|
|
|
|
LIST_T = TypeVar("LIST_T", bound=Union[List[Any], Tuple, Set])
|
|
|
|
|
|
@overload
|
|
def var_operation(
|
|
func: Callable[P, CustomVarOperationReturn[LIST_T]],
|
|
) -> Callable[P, ArrayVar[LIST_T]]: ...
|
|
|
|
|
|
OBJECT_TYPE = TypeVar("OBJECT_TYPE", bound=Dict)
|
|
|
|
|
|
@overload
|
|
def var_operation(
|
|
func: Callable[P, CustomVarOperationReturn[OBJECT_TYPE]],
|
|
) -> Callable[P, ObjectVar[OBJECT_TYPE]]: ...
|
|
|
|
|
|
def var_operation(
|
|
func: Callable[P, CustomVarOperationReturn[T]],
|
|
) -> Callable[P, ImmutableVar[T]]:
|
|
"""Decorator for creating a var operation.
|
|
|
|
Example:
|
|
```python
|
|
@var_operation
|
|
def add(a: NumberVar, b: NumberVar):
|
|
return custom_var_operation(f"{a} + {b}")
|
|
```
|
|
|
|
Args:
|
|
func: The function to decorate.
|
|
|
|
Returns:
|
|
The decorated function.
|
|
"""
|
|
|
|
@functools.wraps(func)
|
|
def wrapper(*args: P.args, **kwargs: P.kwargs) -> ImmutableVar[T]:
|
|
func_args = list(inspect.signature(func).parameters)
|
|
args_vars = {
|
|
func_args[i]: (LiteralVar.create(arg) if not isinstance(arg, Var) else arg)
|
|
for i, arg in enumerate(args)
|
|
}
|
|
kwargs_vars = {
|
|
key: LiteralVar.create(value) if not isinstance(value, Var) else value
|
|
for key, value in kwargs.items()
|
|
}
|
|
|
|
return CustomVarOperation.create(
|
|
args=tuple(list(args_vars.items()) + list(kwargs_vars.items())),
|
|
return_var=func(*args_vars.values(), **kwargs_vars), # type: ignore
|
|
).guess_type()
|
|
|
|
return wrapper
|
|
|
|
|
|
def unionize(*args: Type) -> Type:
|
|
"""Unionize the types.
|
|
|
|
Args:
|
|
args: The types to unionize.
|
|
|
|
Returns:
|
|
The unionized types.
|
|
"""
|
|
if not args:
|
|
return Any
|
|
first, *rest = args
|
|
if not rest:
|
|
return first
|
|
return Union[first, unionize(*rest)]
|
|
|
|
|
|
def figure_out_type(value: Any) -> types.GenericType:
|
|
"""Figure out the type of the value.
|
|
|
|
Args:
|
|
value: The value to figure out the type of.
|
|
|
|
Returns:
|
|
The type of the value.
|
|
"""
|
|
if isinstance(value, list):
|
|
return List[unionize(*(figure_out_type(v) for v in value))]
|
|
if isinstance(value, set):
|
|
return Set[unionize(*(figure_out_type(v) for v in value))]
|
|
if isinstance(value, tuple):
|
|
return Tuple[unionize(*(figure_out_type(v) for v in value)), ...]
|
|
if isinstance(value, dict):
|
|
return Dict[
|
|
unionize(*(figure_out_type(k) for k in value)),
|
|
unionize(*(figure_out_type(v) for v in value.values())),
|
|
]
|
|
if isinstance(value, Var):
|
|
return value._var_type
|
|
return type(value)
|
|
|
|
|
|
class cached_property_no_lock(functools.cached_property):
|
|
"""A special version of functools.cached_property that does not use a lock."""
|
|
|
|
def __init__(self, func):
|
|
"""Initialize the cached_property_no_lock.
|
|
|
|
Args:
|
|
func: The function to cache.
|
|
"""
|
|
super().__init__(func)
|
|
self.lock = contextlib.nullcontext()
|
|
|
|
|
|
class CachedVarOperation:
|
|
"""Base class for cached var operations to lower boilerplate code."""
|
|
|
|
def __post_init__(self):
|
|
"""Post-initialize the CachedVarOperation."""
|
|
object.__delattr__(self, "_var_name")
|
|
|
|
def __getattr__(self, name: str) -> Any:
|
|
"""Get an attribute of the var.
|
|
|
|
Args:
|
|
name: The name of the attribute.
|
|
|
|
Returns:
|
|
The attribute.
|
|
"""
|
|
if name == "_var_name":
|
|
return self._cached_var_name
|
|
|
|
parent_classes = inspect.getmro(self.__class__)
|
|
|
|
return parent_classes[parent_classes.index(CachedVarOperation) + 1].__getattr__( # type: ignore
|
|
self, name
|
|
)
|
|
|
|
def _get_all_var_data(self) -> ImmutableVarData | None:
|
|
"""Get all VarData associated with the Var.
|
|
|
|
Returns:
|
|
The VarData of the components and all of its children.
|
|
"""
|
|
return self._cached_get_all_var_data
|
|
|
|
@cached_property_no_lock
|
|
def _cached_get_all_var_data(self) -> ImmutableVarData | None:
|
|
"""Get the cached VarData.
|
|
|
|
Returns:
|
|
The cached VarData.
|
|
"""
|
|
return ImmutableVarData.merge(
|
|
*map(
|
|
lambda value: (
|
|
value._get_all_var_data() if isinstance(value, Var) else None
|
|
),
|
|
map(
|
|
lambda field: getattr(self, field.name),
|
|
dataclasses.fields(self), # type: ignore
|
|
),
|
|
),
|
|
self._var_data,
|
|
)
|
|
|
|
def __hash__(self) -> int:
|
|
"""Calculate the hash of the object.
|
|
|
|
Returns:
|
|
The hash of the object.
|
|
"""
|
|
return hash(
|
|
(
|
|
self.__class__.__name__,
|
|
*[
|
|
getattr(self, field.name)
|
|
for field in dataclasses.fields(self) # type: ignore
|
|
if field.name not in ["_var_name", "_var_data", "_var_type"]
|
|
],
|
|
)
|
|
)
|
|
|
|
|
|
def and_operation(a: Var | Any, b: Var | Any) -> ImmutableVar:
|
|
"""Perform a logical AND operation on two variables.
|
|
|
|
Args:
|
|
a: The first variable.
|
|
b: The second variable.
|
|
|
|
Returns:
|
|
The result of the logical AND operation.
|
|
"""
|
|
return _and_operation(a, b) # type: ignore
|
|
|
|
|
|
@var_operation
|
|
def _and_operation(a: ImmutableVar, b: ImmutableVar):
|
|
"""Perform a logical AND operation on two variables.
|
|
|
|
Args:
|
|
a: The first variable.
|
|
b: The second variable.
|
|
|
|
Returns:
|
|
The result of the logical AND operation.
|
|
"""
|
|
return var_operation_return(
|
|
js_expression=f"({a} && {b})",
|
|
var_type=unionize(a._var_type, b._var_type),
|
|
)
|
|
|
|
|
|
def or_operation(a: Var | Any, b: Var | Any) -> ImmutableVar:
|
|
"""Perform a logical OR operation on two variables.
|
|
|
|
Args:
|
|
a: The first variable.
|
|
b: The second variable.
|
|
|
|
Returns:
|
|
The result of the logical OR operation.
|
|
"""
|
|
return _or_operation(a, b) # type: ignore
|
|
|
|
|
|
@var_operation
|
|
def _or_operation(a: ImmutableVar, b: ImmutableVar):
|
|
"""Perform a logical OR operation on two variables.
|
|
|
|
Args:
|
|
a: The first variable.
|
|
b: The second variable.
|
|
|
|
Returns:
|
|
The result of the logical OR operation.
|
|
"""
|
|
return var_operation_return(
|
|
js_expression=f"({a} || {b})",
|
|
var_type=unionize(a._var_type, b._var_type),
|
|
)
|
|
|
|
|
|
@dataclasses.dataclass(
|
|
eq=False,
|
|
frozen=True,
|
|
**{"slots": True} if sys.version_info >= (3, 10) else {},
|
|
)
|
|
class ImmutableCallableVar(ImmutableVar):
|
|
"""Decorate a Var-returning function to act as both a Var and a function.
|
|
|
|
This is used as a compatibility shim for replacing Var objects in the
|
|
API with functions that return a family of Var.
|
|
"""
|
|
|
|
fn: Callable[..., Var] = dataclasses.field(
|
|
default_factory=lambda: lambda: ImmutableVar(_var_name="undefined")
|
|
)
|
|
original_var: Var = dataclasses.field(
|
|
default_factory=lambda: ImmutableVar(_var_name="undefined")
|
|
)
|
|
|
|
def __init__(self, fn: Callable[..., Var]):
|
|
"""Initialize a CallableVar.
|
|
|
|
Args:
|
|
fn: The function to decorate (must return Var)
|
|
"""
|
|
original_var = fn()
|
|
super(ImmutableCallableVar, self).__init__(
|
|
_var_name=original_var._var_name,
|
|
_var_type=original_var._var_type,
|
|
_var_data=ImmutableVarData.merge(original_var._get_all_var_data()),
|
|
)
|
|
object.__setattr__(self, "fn", fn)
|
|
object.__setattr__(self, "original_var", original_var)
|
|
|
|
def __call__(self, *args, **kwargs) -> Var:
|
|
"""Call the decorated function.
|
|
|
|
Args:
|
|
*args: The args to pass to the function.
|
|
**kwargs: The kwargs to pass to the function.
|
|
|
|
Returns:
|
|
The Var returned from calling the function.
|
|
"""
|
|
return self.fn(*args, **kwargs)
|
|
|
|
def __hash__(self) -> int:
|
|
"""Calculate the hash of the object.
|
|
|
|
Returns:
|
|
The hash of the object.
|
|
"""
|
|
return hash((self.__class__.__name__, self.original_var))
|
|
|
|
|
|
RETURN_TYPE = TypeVar("RETURN_TYPE")
|
|
|
|
DICT_KEY = TypeVar("DICT_KEY")
|
|
DICT_VAL = TypeVar("DICT_VAL")
|
|
|
|
LIST_INSIDE = TypeVar("LIST_INSIDE")
|
|
|
|
|
|
@dataclasses.dataclass(
|
|
eq=False,
|
|
frozen=True,
|
|
**{"slots": True} if sys.version_info >= (3, 10) else {},
|
|
)
|
|
class ImmutableComputedVar(ImmutableVar[RETURN_TYPE]):
|
|
"""A field with computed getters."""
|
|
|
|
# Whether to track dependencies and cache computed values
|
|
_cache: bool = dataclasses.field(default=False)
|
|
|
|
# Whether the computed var is a backend var
|
|
_backend: bool = dataclasses.field(default=False)
|
|
|
|
# The initial value of the computed var
|
|
_initial_value: RETURN_TYPE | types.Unset = dataclasses.field(default=types.Unset())
|
|
|
|
# Explicit var dependencies to track
|
|
_static_deps: set[str] = dataclasses.field(default_factory=set)
|
|
|
|
# Whether var dependencies should be auto-determined
|
|
_auto_deps: bool = dataclasses.field(default=True)
|
|
|
|
# Interval at which the computed var should be updated
|
|
_update_interval: Optional[datetime.timedelta] = dataclasses.field(default=None)
|
|
|
|
_fget: Callable[[BaseState], RETURN_TYPE] = dataclasses.field(
|
|
default_factory=lambda: lambda _: None
|
|
) # type: ignore
|
|
|
|
def __init__(
|
|
self,
|
|
fget: Callable[[BASE_STATE], RETURN_TYPE],
|
|
initial_value: RETURN_TYPE | types.Unset = types.Unset(),
|
|
cache: bool = False,
|
|
deps: Optional[List[Union[str, Var]]] = None,
|
|
auto_deps: bool = True,
|
|
interval: Optional[Union[int, datetime.timedelta]] = None,
|
|
backend: bool | None = None,
|
|
**kwargs,
|
|
):
|
|
"""Initialize a ComputedVar.
|
|
|
|
Args:
|
|
fget: The getter function.
|
|
initial_value: The initial value of the computed var.
|
|
cache: Whether to cache the computed value.
|
|
deps: Explicit var dependencies to track.
|
|
auto_deps: Whether var dependencies should be auto-determined.
|
|
interval: Interval at which the computed var should be updated.
|
|
backend: Whether the computed var is a backend var.
|
|
**kwargs: additional attributes to set on the instance
|
|
|
|
Raises:
|
|
TypeError: If the computed var dependencies are not Var instances or var names.
|
|
"""
|
|
hints = get_type_hints(fget)
|
|
hint = hints.get("return", Any)
|
|
|
|
kwargs["_var_name"] = kwargs.pop("_var_name", fget.__name__)
|
|
kwargs["_var_type"] = kwargs.pop("_var_type", hint)
|
|
|
|
super(ImmutableComputedVar, self).__init__(
|
|
_var_name=kwargs.pop("_var_name"),
|
|
_var_type=kwargs.pop("_var_type"),
|
|
_var_data=ImmutableVarData.merge(kwargs.pop("_var_data", None)),
|
|
)
|
|
|
|
if backend is None:
|
|
backend = fget.__name__.startswith("_")
|
|
|
|
object.__setattr__(self, "_backend", backend)
|
|
object.__setattr__(self, "_initial_value", initial_value)
|
|
object.__setattr__(self, "_cache", cache)
|
|
|
|
if isinstance(interval, int):
|
|
interval = datetime.timedelta(seconds=interval)
|
|
|
|
object.__setattr__(self, "_update_interval", interval)
|
|
|
|
if deps is None:
|
|
deps = []
|
|
else:
|
|
for dep in deps:
|
|
if isinstance(dep, Var):
|
|
continue
|
|
if isinstance(dep, str) and dep != "":
|
|
continue
|
|
raise TypeError(
|
|
"ComputedVar dependencies must be Var instances or var names (non-empty strings)."
|
|
)
|
|
object.__setattr__(
|
|
self,
|
|
"_static_deps",
|
|
{dep._var_name if isinstance(dep, Var) else dep for dep in deps},
|
|
)
|
|
object.__setattr__(self, "_auto_deps", auto_deps)
|
|
|
|
object.__setattr__(self, "_fget", fget)
|
|
|
|
@override
|
|
def _replace(self, merge_var_data=None, **kwargs: Any) -> ImmutableComputedVar:
|
|
"""Replace the attributes of the ComputedVar.
|
|
|
|
Args:
|
|
merge_var_data: VarData to merge into the existing VarData.
|
|
**kwargs: Var fields to update.
|
|
|
|
Returns:
|
|
The new ComputedVar instance.
|
|
|
|
Raises:
|
|
TypeError: If kwargs contains keys that are not allowed.
|
|
"""
|
|
field_values = dict(
|
|
fget=kwargs.pop("fget", self._fget),
|
|
initial_value=kwargs.pop("initial_value", self._initial_value),
|
|
cache=kwargs.pop("cache", self._cache),
|
|
deps=kwargs.pop("deps", self._static_deps),
|
|
auto_deps=kwargs.pop("auto_deps", self._auto_deps),
|
|
interval=kwargs.pop("interval", self._update_interval),
|
|
backend=kwargs.pop("backend", self._backend),
|
|
_var_name=kwargs.pop("_var_name", self._var_name),
|
|
_var_type=kwargs.pop("_var_type", self._var_type),
|
|
_var_data=kwargs.pop(
|
|
"_var_data", VarData.merge(self._var_data, merge_var_data)
|
|
),
|
|
)
|
|
|
|
if kwargs:
|
|
unexpected_kwargs = ", ".join(kwargs.keys())
|
|
raise TypeError(f"Unexpected keyword arguments: {unexpected_kwargs}")
|
|
|
|
return ImmutableComputedVar(**field_values)
|
|
|
|
@property
|
|
def _cache_attr(self) -> str:
|
|
"""Get the attribute used to cache the value on the instance.
|
|
|
|
Returns:
|
|
An attribute name.
|
|
"""
|
|
return f"__cached_{self._var_name}"
|
|
|
|
@property
|
|
def _last_updated_attr(self) -> str:
|
|
"""Get the attribute used to store the last updated timestamp.
|
|
|
|
Returns:
|
|
An attribute name.
|
|
"""
|
|
return f"__last_updated_{self._var_name}"
|
|
|
|
def needs_update(self, instance: BaseState) -> bool:
|
|
"""Check if the computed var needs to be updated.
|
|
|
|
Args:
|
|
instance: The state instance that the computed var is attached to.
|
|
|
|
Returns:
|
|
True if the computed var needs to be updated, False otherwise.
|
|
"""
|
|
if self._update_interval is None:
|
|
return False
|
|
last_updated = getattr(instance, self._last_updated_attr, None)
|
|
if last_updated is None:
|
|
return True
|
|
return datetime.datetime.now() - last_updated > self._update_interval
|
|
|
|
@overload
|
|
def __get__(
|
|
self: ImmutableComputedVar[int] | ImmutableComputedVar[float],
|
|
instance: None,
|
|
owner: Type,
|
|
) -> NumberVar: ...
|
|
|
|
@overload
|
|
def __get__(
|
|
self: ImmutableComputedVar[str],
|
|
instance: None,
|
|
owner: Type,
|
|
) -> StringVar: ...
|
|
|
|
@overload
|
|
def __get__(
|
|
self: ImmutableComputedVar[dict[DICT_KEY, DICT_VAL]],
|
|
instance: None,
|
|
owner: Type,
|
|
) -> ObjectVar[dict[DICT_KEY, DICT_VAL]]: ...
|
|
|
|
@overload
|
|
def __get__(
|
|
self: ImmutableComputedVar[list[LIST_INSIDE]],
|
|
instance: None,
|
|
owner: Type,
|
|
) -> ArrayVar[list[LIST_INSIDE]]: ...
|
|
|
|
@overload
|
|
def __get__(
|
|
self: ImmutableComputedVar[set[LIST_INSIDE]],
|
|
instance: None,
|
|
owner: Type,
|
|
) -> ArrayVar[set[LIST_INSIDE]]: ...
|
|
|
|
@overload
|
|
def __get__(
|
|
self: ImmutableComputedVar[tuple[LIST_INSIDE, ...]],
|
|
instance: None,
|
|
owner: Type,
|
|
) -> ArrayVar[tuple[LIST_INSIDE, ...]]: ...
|
|
|
|
@overload
|
|
def __get__(
|
|
self, instance: None, owner: Type
|
|
) -> ImmutableComputedVar[RETURN_TYPE]: ...
|
|
|
|
@overload
|
|
def __get__(self, instance: BaseState, owner: Type) -> RETURN_TYPE: ...
|
|
|
|
def __get__(self, instance: BaseState | None, owner):
|
|
"""Get the ComputedVar value.
|
|
|
|
If the value is already cached on the instance, return the cached value.
|
|
|
|
Args:
|
|
instance: the instance of the class accessing this computed var.
|
|
owner: the class that this descriptor is attached to.
|
|
|
|
Returns:
|
|
The value of the var for the given instance.
|
|
"""
|
|
if instance is None:
|
|
state_where_defined = owner
|
|
while self.fget.__name__ in state_where_defined.inherited_vars:
|
|
state_where_defined = state_where_defined.get_parent_state()
|
|
|
|
return self._replace(
|
|
_var_name=format_state_name(state_where_defined.get_full_name())
|
|
+ "."
|
|
+ self._var_name,
|
|
merge_var_data=ImmutableVarData.from_state(state_where_defined),
|
|
).guess_type()
|
|
|
|
if not self._cache:
|
|
return self.fget(instance)
|
|
|
|
# handle caching
|
|
if not hasattr(instance, self._cache_attr) or self.needs_update(instance):
|
|
# Set cache attr on state instance.
|
|
setattr(instance, self._cache_attr, self.fget(instance))
|
|
# Ensure the computed var gets serialized to redis.
|
|
instance._was_touched = True
|
|
# Set the last updated timestamp on the state instance.
|
|
setattr(instance, self._last_updated_attr, datetime.datetime.now())
|
|
return getattr(instance, self._cache_attr)
|
|
|
|
def _deps(
|
|
self,
|
|
objclass: Type,
|
|
obj: FunctionType | CodeType | None = None,
|
|
self_name: Optional[str] = None,
|
|
) -> set[str]:
|
|
"""Determine var dependencies of this ComputedVar.
|
|
|
|
Save references to attributes accessed on "self". Recursively called
|
|
when the function makes a method call on "self" or define comprehensions
|
|
or nested functions that may reference "self".
|
|
|
|
Args:
|
|
objclass: the class obj this ComputedVar is attached to.
|
|
obj: the object to disassemble (defaults to the fget function).
|
|
self_name: if specified, look for this name in LOAD_FAST and LOAD_DEREF instructions.
|
|
|
|
Returns:
|
|
A set of variable names accessed by the given obj.
|
|
|
|
Raises:
|
|
VarValueError: if the function references the get_state, parent_state, or substates attributes
|
|
(cannot track deps in a related state, only implicitly via parent state).
|
|
"""
|
|
if not self._auto_deps:
|
|
return self._static_deps
|
|
d = self._static_deps.copy()
|
|
if obj is None:
|
|
fget = self._fget
|
|
if fget is not None:
|
|
obj = cast(FunctionType, fget)
|
|
else:
|
|
return set()
|
|
with contextlib.suppress(AttributeError):
|
|
# unbox functools.partial
|
|
obj = cast(FunctionType, obj.func) # type: ignore
|
|
with contextlib.suppress(AttributeError):
|
|
# unbox EventHandler
|
|
obj = cast(FunctionType, obj.fn) # type: ignore
|
|
|
|
if self_name is None and isinstance(obj, FunctionType):
|
|
try:
|
|
# the first argument to the function is the name of "self" arg
|
|
self_name = obj.__code__.co_varnames[0]
|
|
except (AttributeError, IndexError):
|
|
self_name = None
|
|
if self_name is None:
|
|
# cannot reference attributes on self if method takes no args
|
|
return set()
|
|
|
|
invalid_names = ["get_state", "parent_state", "substates", "get_substate"]
|
|
self_is_top_of_stack = False
|
|
for instruction in dis.get_instructions(obj):
|
|
if (
|
|
instruction.opname in ("LOAD_FAST", "LOAD_DEREF")
|
|
and instruction.argval == self_name
|
|
):
|
|
# bytecode loaded the class instance to the top of stack, next load instruction
|
|
# is referencing an attribute on self
|
|
self_is_top_of_stack = True
|
|
continue
|
|
if self_is_top_of_stack and instruction.opname in (
|
|
"LOAD_ATTR",
|
|
"LOAD_METHOD",
|
|
):
|
|
try:
|
|
ref_obj = getattr(objclass, instruction.argval)
|
|
except Exception:
|
|
ref_obj = None
|
|
if instruction.argval in invalid_names:
|
|
raise VarValueError(
|
|
f"Cached var {self._var_full_name} cannot access arbitrary state via `{instruction.argval}`."
|
|
)
|
|
if callable(ref_obj):
|
|
# recurse into callable attributes
|
|
d.update(
|
|
self._deps(
|
|
objclass=objclass,
|
|
obj=ref_obj,
|
|
)
|
|
)
|
|
# recurse into property fget functions
|
|
elif isinstance(ref_obj, property) and not isinstance(
|
|
ref_obj, ImmutableComputedVar
|
|
):
|
|
d.update(
|
|
self._deps(
|
|
objclass=objclass,
|
|
obj=ref_obj.fget, # type: ignore
|
|
)
|
|
)
|
|
elif (
|
|
instruction.argval in objclass.backend_vars
|
|
or instruction.argval in objclass.vars
|
|
):
|
|
# var access
|
|
d.add(instruction.argval)
|
|
elif instruction.opname == "LOAD_CONST" and isinstance(
|
|
instruction.argval, CodeType
|
|
):
|
|
# recurse into nested functions / comprehensions, which can reference
|
|
# instance attributes from the outer scope
|
|
d.update(
|
|
self._deps(
|
|
objclass=objclass,
|
|
obj=instruction.argval,
|
|
self_name=self_name,
|
|
)
|
|
)
|
|
self_is_top_of_stack = False
|
|
return d
|
|
|
|
def mark_dirty(self, instance) -> None:
|
|
"""Mark this ComputedVar as dirty.
|
|
|
|
Args:
|
|
instance: the state instance that needs to recompute the value.
|
|
"""
|
|
with contextlib.suppress(AttributeError):
|
|
delattr(instance, self._cache_attr)
|
|
|
|
def _determine_var_type(self) -> Type:
|
|
"""Get the type of the var.
|
|
|
|
Returns:
|
|
The type of the var.
|
|
"""
|
|
hints = get_type_hints(self._fget)
|
|
if "return" in hints:
|
|
return hints["return"]
|
|
return Any
|
|
|
|
@property
|
|
def __class__(self) -> Type:
|
|
"""Get the class of the var.
|
|
|
|
Returns:
|
|
The class of the var.
|
|
"""
|
|
return ComputedVar
|
|
|
|
@property
|
|
def fget(self) -> Callable[[BaseState], RETURN_TYPE]:
|
|
"""Get the getter function.
|
|
|
|
Returns:
|
|
The getter function.
|
|
"""
|
|
return self._fget
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
BASE_STATE = TypeVar("BASE_STATE", bound=BaseState)
|
|
|
|
|
|
@overload
|
|
def immutable_computed_var(
|
|
fget: None = None,
|
|
initial_value: Any | types.Unset = types.Unset(),
|
|
cache: bool = False,
|
|
deps: Optional[List[Union[str, Var]]] = None,
|
|
auto_deps: bool = True,
|
|
interval: Optional[Union[datetime.timedelta, int]] = None,
|
|
backend: bool | None = None,
|
|
**kwargs,
|
|
) -> Callable[
|
|
[Callable[[BASE_STATE], RETURN_TYPE]], ImmutableComputedVar[RETURN_TYPE]
|
|
]: ...
|
|
|
|
|
|
@overload
|
|
def immutable_computed_var(
|
|
fget: Callable[[BASE_STATE], RETURN_TYPE],
|
|
initial_value: RETURN_TYPE | types.Unset = types.Unset(),
|
|
cache: bool = False,
|
|
deps: Optional[List[Union[str, Var]]] = None,
|
|
auto_deps: bool = True,
|
|
interval: Optional[Union[datetime.timedelta, int]] = None,
|
|
backend: bool | None = None,
|
|
**kwargs,
|
|
) -> ImmutableComputedVar[RETURN_TYPE]: ...
|
|
|
|
|
|
def immutable_computed_var(
|
|
fget: Callable[[BASE_STATE], Any] | None = None,
|
|
initial_value: Any | types.Unset = types.Unset(),
|
|
cache: bool = False,
|
|
deps: Optional[List[Union[str, Var]]] = None,
|
|
auto_deps: bool = True,
|
|
interval: Optional[Union[datetime.timedelta, int]] = None,
|
|
backend: bool | None = None,
|
|
**kwargs,
|
|
) -> (
|
|
ImmutableComputedVar | Callable[[Callable[[BASE_STATE], Any]], ImmutableComputedVar]
|
|
):
|
|
"""A ComputedVar decorator with or without kwargs.
|
|
|
|
Args:
|
|
fget: The getter function.
|
|
initial_value: The initial value of the computed var.
|
|
cache: Whether to cache the computed value.
|
|
deps: Explicit var dependencies to track.
|
|
auto_deps: Whether var dependencies should be auto-determined.
|
|
interval: Interval at which the computed var should be updated.
|
|
backend: Whether the computed var is a backend var.
|
|
**kwargs: additional attributes to set on the instance
|
|
|
|
Returns:
|
|
A ComputedVar instance.
|
|
|
|
Raises:
|
|
ValueError: If caching is disabled and an update interval is set.
|
|
VarDependencyError: If user supplies dependencies without caching.
|
|
"""
|
|
if cache is False and interval is not None:
|
|
raise ValueError("Cannot set update interval without caching.")
|
|
|
|
if cache is False and (deps is not None or auto_deps is False):
|
|
raise VarDependencyError("Cannot track dependencies without caching.")
|
|
|
|
if fget is not None:
|
|
return ImmutableComputedVar(fget, cache=cache)
|
|
|
|
def wrapper(fget: Callable[[BASE_STATE], Any]) -> ImmutableComputedVar:
|
|
return ImmutableComputedVar(
|
|
fget,
|
|
initial_value=initial_value,
|
|
cache=cache,
|
|
deps=deps,
|
|
auto_deps=auto_deps,
|
|
interval=interval,
|
|
backend=backend,
|
|
**kwargs,
|
|
)
|
|
|
|
return wrapper
|
|
|
|
|
|
RETURN = TypeVar("RETURN")
|
|
|
|
|
|
class CustomVarOperationReturn(ImmutableVar[RETURN]):
|
|
"""Base class for custom var operations."""
|
|
|
|
@classmethod
|
|
def create(
|
|
cls,
|
|
js_expression: str,
|
|
_var_type: Type[RETURN] | None = None,
|
|
_var_data: VarData | None = None,
|
|
) -> CustomVarOperationReturn[RETURN]:
|
|
"""Create a CustomVarOperation.
|
|
|
|
Args:
|
|
js_expression: The JavaScript expression to evaluate.
|
|
_var_type: The type of the var.
|
|
_var_data: Additional hooks and imports associated with the Var.
|
|
|
|
Returns:
|
|
The CustomVarOperation.
|
|
"""
|
|
return CustomVarOperationReturn(
|
|
_var_name=js_expression,
|
|
_var_type=_var_type or Any,
|
|
_var_data=ImmutableVarData.merge(_var_data),
|
|
)
|
|
|
|
|
|
def var_operation_return(
|
|
js_expression: str,
|
|
var_type: Type[RETURN] | None = None,
|
|
) -> CustomVarOperationReturn[RETURN]:
|
|
"""Shortcut for creating a CustomVarOperationReturn.
|
|
|
|
Args:
|
|
js_expression: The JavaScript expression to evaluate.
|
|
var_type: The type of the var.
|
|
|
|
Returns:
|
|
The CustomVarOperationReturn.
|
|
"""
|
|
return CustomVarOperationReturn.create(js_expression, var_type)
|
|
|
|
|
|
@dataclasses.dataclass(
|
|
eq=False,
|
|
frozen=True,
|
|
**{"slots": True} if sys.version_info >= (3, 10) else {},
|
|
)
|
|
class CustomVarOperation(CachedVarOperation, ImmutableVar[T]):
|
|
"""Base class for custom var operations."""
|
|
|
|
_args: Tuple[Tuple[str, Var], ...] = dataclasses.field(default_factory=tuple)
|
|
|
|
_return: CustomVarOperationReturn[T] = dataclasses.field(
|
|
default_factory=lambda: CustomVarOperationReturn.create("")
|
|
)
|
|
|
|
@cached_property_no_lock
|
|
def _cached_var_name(self) -> str:
|
|
"""Get the cached var name.
|
|
|
|
Returns:
|
|
The cached var name.
|
|
"""
|
|
return str(self._return)
|
|
|
|
@cached_property_no_lock
|
|
def _cached_get_all_var_data(self) -> ImmutableVarData | None:
|
|
"""Get the cached VarData.
|
|
|
|
Returns:
|
|
The cached VarData.
|
|
"""
|
|
return ImmutableVarData.merge(
|
|
*map(
|
|
lambda arg: arg[1]._get_all_var_data(),
|
|
self._args,
|
|
),
|
|
self._return._get_all_var_data(),
|
|
self._var_data,
|
|
)
|
|
|
|
@classmethod
|
|
def create(
|
|
cls,
|
|
args: Tuple[Tuple[str, Var], ...],
|
|
return_var: CustomVarOperationReturn[T],
|
|
_var_data: VarData | None = None,
|
|
) -> CustomVarOperation[T]:
|
|
"""Create a CustomVarOperation.
|
|
|
|
Args:
|
|
args: The arguments to the operation.
|
|
return_var: The return var.
|
|
_var_data: Additional hooks and imports associated with the Var.
|
|
|
|
Returns:
|
|
The CustomVarOperation.
|
|
"""
|
|
return CustomVarOperation(
|
|
_var_name="",
|
|
_var_type=return_var._var_type,
|
|
_var_data=ImmutableVarData.merge(_var_data),
|
|
_args=args,
|
|
_return=return_var,
|
|
)
|