reflex/tests/units/components/datadisplay/test_datatable.py
Thomas Brandého 3f538865b5
reorganize all tests in a single top folder (#3981)
* lift node version restraint to allow more recent version if already installed

* add node test for latest version

* change python version

* use purple for debug logs

* update workflow

* add playwright dev dependency

* update workflow

* change test

* oops

* improve test

* update test

* fix tests

* mv units tests to a subfolder

* reorganize tests

* fix install

* update test_state

* revert node changes and only keep new tests organization

* move integration tests in tests/integration

* fix integration workflow

* fix dockerfile workflow

* fix dockerfile workflow 2

* fix shared_state
2024-09-26 01:22:52 +02:00

122 lines
3.6 KiB
Python

import pandas as pd
import pytest
import reflex as rx
from reflex.components.gridjs.datatable import DataTable
from reflex.utils import types
from reflex.utils.serializers import serialize, serialize_dataframe
@pytest.mark.parametrize(
"data_table_state,expected",
[
pytest.param(
{
"data": pd.DataFrame(
[["foo", "bar"], ["foo1", "bar1"]], columns=["column1", "column2"]
)
},
"data",
),
pytest.param({"data": ["foo", "bar"]}, ""),
pytest.param({"data": [["foo", "bar"], ["foo1", "bar1"]]}, ""),
],
indirect=["data_table_state"],
)
def test_validate_data_table(data_table_state: rx.State, expected):
"""Test the str/render function.
Args:
data_table_state: The state fixture.
expected: expected var name.
"""
if not types.is_dataframe(data_table_state.data._var_type):
data_table_component = DataTable.create(
data=data_table_state.data, columns=data_table_state.columns
)
else:
data_table_component = DataTable.create(data=data_table_state.data)
data_table_dict = data_table_component.render()
# prefix expected with state name
state_name = data_table_state.get_name()
expected = f"{state_name}.{expected}" if expected else state_name
assert data_table_dict["props"] == [
f"columns={{{expected}.columns}}",
f"data={{{expected}.data}}",
]
@pytest.mark.parametrize(
"props",
[
{"data": [["foo", "bar"], ["foo1", "bar1"]]},
{
"data": pd.DataFrame([["foo", "bar"], ["foo1", "bar1"]]),
"columns": ["column1", "column2"],
},
],
)
def test_invalid_props(props):
"""Test if value error is thrown when invalid props are passed.
Args:
props: props to pass in component.
"""
with pytest.raises(ValueError):
DataTable.create(**props)
@pytest.mark.parametrize(
"fixture, err_msg, is_data_frame",
[
(
"data_table_state2",
"Annotation of the computed var assigned to the data field should be provided.",
True,
),
(
"data_table_state3",
"Annotation of the computed var assigned to the column field should be provided.",
False,
),
(
"data_table_state4",
"Annotation of the computed var assigned to the data field should be provided.",
False,
),
],
)
def test_computed_var_without_annotation(fixture, request, err_msg, is_data_frame):
"""Test if value error is thrown when the computed var assigned to the data/column prop is not annotated.
Args:
fixture: the state.
request: fixture request.
err_msg: expected error message.
is_data_frame: whether data field is a pandas dataframe.
"""
with pytest.raises(ValueError) as err:
if is_data_frame:
DataTable.create(data=request.getfixturevalue(fixture).data)
else:
DataTable.create(
data=request.getfixturevalue(fixture).data,
columns=request.getfixturevalue(fixture).columns,
)
assert err.value.args[0] == err_msg
def test_serialize_dataframe():
"""Test if dataframe is serialized correctly."""
df = pd.DataFrame(
[["foo", "bar"], ["foo1", "bar1"]], columns=["column1", "column2"]
)
value = serialize(df)
assert value == serialize_dataframe(df)
assert isinstance(value, dict)
assert tuple(value) == ("columns", "data")