reflex/reflex/utils/types.py
2025-02-18 14:03:59 -08:00

890 lines
26 KiB
Python

"""Contains custom types and methods to check types."""
from __future__ import annotations
import dataclasses
import inspect
import sys
import types
from functools import cached_property, lru_cache, wraps
from types import GenericAlias
from typing import (
TYPE_CHECKING,
Any,
Callable,
ClassVar,
Dict,
FrozenSet,
Iterable,
List,
Literal,
Mapping,
Optional,
Sequence,
Tuple,
Type,
Union,
_GenericAlias, # pyright: ignore [reportAttributeAccessIssue]
_SpecialGenericAlias, # pyright: ignore [reportAttributeAccessIssue]
get_args,
get_type_hints,
)
from typing import get_origin as get_origin_og
import sqlalchemy
from pydantic.v1.fields import ModelField
from sqlalchemy.ext.associationproxy import AssociationProxyInstance
from sqlalchemy.ext.hybrid import hybrid_property
from sqlalchemy.orm import DeclarativeBase, Mapped, QueryableAttribute, Relationship
from typing_extensions import Self as Self
from typing_extensions import is_typeddict
from typing_extensions import override as override
import reflex
from reflex import constants
from reflex.base import Base
from reflex.components.core.breakpoints import Breakpoints
from reflex.utils import console
# Potential GenericAlias types for isinstance checks.
GenericAliasTypes = (_GenericAlias, GenericAlias, _SpecialGenericAlias)
# Potential Union types for isinstance checks (UnionType added in py3.10).
UnionTypes = (Union, types.UnionType) if hasattr(types, "UnionType") else (Union,)
# Union of generic types.
GenericType = Union[Type, _GenericAlias]
# Valid state var types.
JSONType = {str, int, float, bool}
PrimitiveType = Union[int, float, bool, str, list, dict, set, tuple]
PrimitiveTypes = (int, float, bool, str, list, dict, set, tuple)
StateVar = Union[PrimitiveType, Base, None]
StateIterVar = Union[list, set, tuple]
if TYPE_CHECKING:
from reflex.vars.base import Var
ArgsSpec = (
Callable[[], Sequence[Var]]
| Callable[[Var], Sequence[Var]]
| Callable[[Var, Var], Sequence[Var]]
| Callable[[Var, Var, Var], Sequence[Var]]
| Callable[[Var, Var, Var, Var], Sequence[Var]]
| Callable[[Var, Var, Var, Var, Var], Sequence[Var]]
| Callable[[Var, Var, Var, Var, Var, Var], Sequence[Var]]
| Callable[[Var, Var, Var, Var, Var, Var, Var], Sequence[Var]]
)
else:
ArgsSpec = Callable[..., list[Any]]
PrimitiveToAnnotation = {
list: List,
tuple: Tuple,
dict: Dict,
}
RESERVED_BACKEND_VAR_NAMES = {
"_abc_impl",
"_backend_vars",
"_was_touched",
}
class Unset:
"""A class to represent an unset value.
This is used to differentiate between a value that is not set and a value that is set to None.
"""
def __repr__(self) -> str:
"""Return the string representation of the class.
Returns:
The string representation of the class.
"""
return "Unset"
def __bool__(self) -> bool:
"""Return False when the class is used in a boolean context.
Returns:
False
"""
return False
@lru_cache()
def get_origin(tp: Any):
"""Get the origin of a class.
Args:
tp: The class to get the origin of.
Returns:
The origin of the class.
"""
return get_origin_og(tp)
@lru_cache()
def is_generic_alias(cls: GenericType) -> bool:
"""Check whether the class is a generic alias.
Args:
cls: The class to check.
Returns:
Whether the class is a generic alias.
"""
return isinstance(cls, GenericAliasTypes) # pyright: ignore [reportArgumentType]
def unionize(*args: GenericType) -> Type:
"""Unionize the types.
Args:
args: The types to unionize.
Returns:
The unionized types.
"""
if not args:
return Any # pyright: ignore [reportReturnType]
if len(args) == 1:
return args[0]
# We are bisecting the args list here to avoid hitting the recursion limit
# In Python versions >= 3.11, we can simply do `return Union[*args]`
midpoint = len(args) // 2
first_half, second_half = args[:midpoint], args[midpoint:]
return Union[unionize(*first_half), unionize(*second_half)] # pyright: ignore [reportReturnType]
def is_none(cls: GenericType) -> bool:
"""Check if a class is None.
Args:
cls: The class to check.
Returns:
Whether the class is None.
"""
return cls is type(None) or cls is None
@lru_cache()
def is_union(cls: GenericType) -> bool:
"""Check if a class is a Union.
Args:
cls: The class to check.
Returns:
Whether the class is a Union.
"""
return get_origin(cls) in UnionTypes
@lru_cache()
def is_literal(cls: GenericType) -> bool:
"""Check if a class is a Literal.
Args:
cls: The class to check.
Returns:
Whether the class is a literal.
"""
return get_origin(cls) is Literal
def has_args(cls: Type) -> bool:
"""Check if the class has generic parameters.
Args:
cls: The class to check.
Returns:
Whether the class has generic
"""
if get_args(cls):
return True
# Check if the class inherits from a generic class (using __orig_bases__)
if hasattr(cls, "__orig_bases__"):
for base in cls.__orig_bases__:
if get_args(base):
return True
return False
def is_optional(cls: GenericType) -> bool:
"""Check if a class is an Optional.
Args:
cls: The class to check.
Returns:
Whether the class is an Optional.
"""
return is_union(cls) and type(None) in get_args(cls)
def value_inside_optional(cls: GenericType) -> GenericType:
"""Get the value inside an Optional type or the original type.
Args:
cls: The class to check.
Returns:
The value inside the Optional type or the original type.
"""
if is_union(cls) and len(args := get_args(cls)) >= 2 and type(None) in args:
return unionize(*[arg for arg in args if arg is not type(None)])
return cls
def get_property_hint(attr: Any | None) -> GenericType | None:
"""Check if an attribute is a property and return its type hint.
Args:
attr: The descriptor to check.
Returns:
The type hint of the property, if it is a property, else None.
"""
if not isinstance(attr, (property, hybrid_property)):
return None
hints = get_type_hints(attr.fget)
return hints.get("return", None)
def get_attribute_access_type(cls: GenericType, name: str) -> GenericType | None:
"""Check if an attribute can be accessed on the cls and return its type.
Supports pydantic models, unions, and annotated attributes on rx.Model.
Args:
cls: The class to check.
name: The name of the attribute to check.
Returns:
The type of the attribute, if accessible, or None
"""
from reflex.model import Model
try:
attr = getattr(cls, name, None)
except NotImplementedError:
attr = None
if hint := get_property_hint(attr):
return hint
if (
hasattr(cls, "__fields__")
and name in cls.__fields__
and hasattr(cls.__fields__[name], "outer_type_")
):
# pydantic models
field = cls.__fields__[name]
type_ = field.outer_type_
if isinstance(type_, ModelField):
type_ = type_.type_
if (
not field.required
and field.default is None
and field.default_factory is None
):
# Ensure frontend uses null coalescing when accessing.
type_ = Optional[type_]
return type_
elif isinstance(cls, type) and issubclass(cls, DeclarativeBase):
insp = sqlalchemy.inspect(cls)
if name in insp.columns:
# check for list types
column = insp.columns[name]
column_type = column.type
try:
type_ = insp.columns[name].type.python_type
except NotImplementedError:
type_ = None
if type_ is not None:
if hasattr(column_type, "item_type"):
try:
item_type = column_type.item_type.python_type # pyright: ignore [reportAttributeAccessIssue]
except NotImplementedError:
item_type = None
if item_type is not None:
if type_ in PrimitiveToAnnotation:
type_ = PrimitiveToAnnotation[type_]
type_ = type_[item_type] # pyright: ignore [reportIndexIssue]
if column.nullable:
type_ = Optional[type_]
return type_
if name in insp.all_orm_descriptors:
descriptor = insp.all_orm_descriptors[name]
if hint := get_property_hint(descriptor):
return hint
if isinstance(descriptor, QueryableAttribute):
prop = descriptor.property
if isinstance(prop, Relationship):
type_ = prop.mapper.class_
# TODO: check for nullable?
type_ = list[type_] if prop.uselist else Optional[type_]
return type_
if isinstance(attr, AssociationProxyInstance):
return list[
get_attribute_access_type(
attr.target_class,
attr.remote_attr.key, # type: ignore[attr-defined]
)
]
elif isinstance(cls, type) and not is_generic_alias(cls) and issubclass(cls, Model):
# Check in the annotations directly (for sqlmodel.Relationship)
hints = get_type_hints(cls)
if name in hints:
type_ = hints[name]
type_origin = get_origin(type_)
if isinstance(type_origin, type) and issubclass(type_origin, Mapped):
return get_args(type_)[0] # SQLAlchemy v2
if isinstance(type_, ModelField):
return type_.type_ # SQLAlchemy v1.4
return type_
elif is_union(cls):
# Check in each arg of the annotation.
return unionize(
*(get_attribute_access_type(arg, name) for arg in get_args(cls))
)
elif isinstance(cls, type):
# Bare class
if sys.version_info >= (3, 10):
exceptions = NameError
else:
exceptions = (NameError, TypeError)
try:
hints = get_type_hints(cls)
if name in hints:
return hints[name]
except exceptions as e:
console.warn(f"Failed to resolve ForwardRefs for {cls}.{name} due to {e}")
pass
return None # Attribute is not accessible.
@lru_cache()
def get_base_class(cls: GenericType) -> Type:
"""Get the base class of a class.
Args:
cls: The class.
Returns:
The base class of the class.
Raises:
TypeError: If a literal has multiple types.
"""
if is_literal(cls):
# only literals of the same type are supported.
arg_type = type(get_args(cls)[0])
if not all(type(arg) is arg_type for arg in get_args(cls)):
raise TypeError("only literals of the same type are supported")
return type(get_args(cls)[0])
if is_union(cls):
return tuple(get_base_class(arg) for arg in get_args(cls)) # pyright: ignore [reportReturnType]
return get_base_class(cls.__origin__) if is_generic_alias(cls) else cls
def _breakpoints_satisfies_typing(cls_check: GenericType, instance: Any) -> bool:
"""Check if the breakpoints instance satisfies the typing.
Args:
cls_check: The class to check against.
instance: The instance to check.
Returns:
Whether the breakpoints instance satisfies the typing.
"""
cls_check_base = get_base_class(cls_check)
if cls_check_base == Breakpoints:
_, expected_type = get_args(cls_check)
if is_literal(expected_type):
for value in instance.values():
if not isinstance(value, str) or value not in get_args(expected_type):
return False
return True
elif isinstance(cls_check_base, tuple):
# union type, so check all types
return any(
_breakpoints_satisfies_typing(type_to_check, instance)
for type_to_check in get_args(cls_check)
)
elif cls_check_base == reflex.vars.Var and "__args__" in cls_check.__dict__:
return _breakpoints_satisfies_typing(get_args(cls_check)[0], instance)
return False
def _issubclass(cls: GenericType, cls_check: GenericType, instance: Any = None) -> bool:
"""Check if a class is a subclass of another class.
Args:
cls: The class to check.
cls_check: The class to check against.
instance: An instance of cls to aid in checking generics.
Returns:
Whether the class is a subclass of the other class.
Raises:
TypeError: If the base class is not valid for issubclass.
"""
# Special check for Any.
if cls_check == Any:
return True
if cls in [Any, Callable, None]:
return False
# Get the base classes.
cls_base = get_base_class(cls)
cls_check_base = get_base_class(cls_check)
# The class we're checking should not be a union.
if isinstance(cls_base, tuple):
return False
# Check that fields of breakpoints match the expected values.
if isinstance(instance, Breakpoints):
return _breakpoints_satisfies_typing(cls_check, instance)
if isinstance(cls_check_base, tuple):
cls_check_base = tuple(
cls_check_one if not is_typeddict(cls_check_one) else dict
for cls_check_one in cls_check_base
)
if is_typeddict(cls_check_base):
cls_check_base = dict
# Check if the types match.
try:
return cls_check_base == Any or issubclass(cls_base, cls_check_base)
except TypeError as te:
# These errors typically arise from bad annotations and are hard to
# debug without knowing the type that we tried to compare.
raise TypeError(f"Invalid type for issubclass: {cls_base}") from te
def does_obj_satisfy_typed_dict(obj: Any, cls: GenericType) -> bool:
"""Check if an object satisfies a typed dict.
Args:
obj: The object to check.
cls: The typed dict to check against.
Returns:
Whether the object satisfies the typed dict.
"""
if not isinstance(obj, Mapping):
return False
key_names_to_values = get_type_hints(cls)
required_keys: FrozenSet[str] = getattr(cls, "__required_keys__", frozenset())
if not all(
isinstance(key, str)
and key in key_names_to_values
and _isinstance(value, key_names_to_values[key])
for key, value in obj.items()
):
return False
# TODO in 3.14: Implement https://peps.python.org/pep-0728/ if it's approved
# required keys are all present
return required_keys.issubset(required_keys)
def _isinstance(obj: Any, cls: GenericType, nested: int = 0) -> bool:
"""Check if an object is an instance of a class.
Args:
obj: The object to check.
cls: The class to check against.
nested: How many levels deep to check.
Returns:
Whether the object is an instance of the class.
"""
if cls is Any:
return True
from reflex.vars import LiteralVar, Var
if cls is Var:
return isinstance(obj, Var)
if isinstance(obj, LiteralVar):
return _isinstance(obj._var_value, cls, nested=nested)
if isinstance(obj, Var):
return _issubclass(obj._var_type, cls)
if cls is None or cls is type(None):
return obj is None
if cls and is_union(cls):
return any(_isinstance(obj, arg, nested=nested) for arg in get_args(cls))
if is_literal(cls):
return obj in get_args(cls)
origin = get_origin(cls)
if origin is None:
# cls is a typed dict
if is_typeddict(cls):
if nested:
return does_obj_satisfy_typed_dict(obj, cls)
return isinstance(obj, dict)
# cls is a float
if cls is float:
return isinstance(obj, (float, int))
# cls is a simple class
return isinstance(obj, cls)
args = get_args(cls)
if not args:
# cls is a simple generic class
return isinstance(obj, origin)
if nested > 0 and args:
if origin is list:
return isinstance(obj, list) and all(
_isinstance(item, args[0], nested=nested - 1) for item in obj
)
if origin is tuple:
if args[-1] is Ellipsis:
return isinstance(obj, tuple) and all(
_isinstance(item, args[0], nested=nested - 1) for item in obj
)
return (
isinstance(obj, tuple)
and len(obj) == len(args)
and all(
_isinstance(item, arg, nested=nested - 1)
for item, arg in zip(obj, args, strict=True)
)
)
if origin in (dict, Mapping, Breakpoints):
return isinstance(obj, Mapping) and all(
_isinstance(key, args[0], nested=nested - 1)
and _isinstance(value, args[1], nested=nested - 1)
for key, value in obj.items()
)
if origin is set:
return isinstance(obj, set) and all(
_isinstance(item, args[0], nested=nested - 1) for item in obj
)
if args:
from reflex.vars import Field
if origin is Field:
return _isinstance(obj, args[0], nested=nested)
return isinstance(obj, get_base_class(cls))
def is_dataframe(value: Type) -> bool:
"""Check if the given value is a dataframe.
Args:
value: The value to check.
Returns:
Whether the value is a dataframe.
"""
if is_generic_alias(value) or value == Any:
return False
return value.__name__ == "DataFrame"
def is_valid_var_type(type_: Type) -> bool:
"""Check if the given type is a valid prop type.
Args:
type_: The type to check.
Returns:
Whether the type is a valid prop type.
"""
from reflex.utils import serializers
if is_union(type_):
return all((is_valid_var_type(arg) for arg in get_args(type_)))
return (
_issubclass(type_, StateVar)
or serializers.has_serializer(type_)
or dataclasses.is_dataclass(type_)
)
def is_backend_base_variable(name: str, cls: Type) -> bool:
"""Check if this variable name correspond to a backend variable.
Args:
name: The name of the variable to check
cls: The class of the variable to check
Returns:
bool: The result of the check
"""
if name in RESERVED_BACKEND_VAR_NAMES:
return False
if not name.startswith("_"):
return False
if name.startswith("__"):
return False
if name.startswith(f"_{cls.__name__}__"):
return False
# Extract the namespace of the original module if defined (dynamic substates).
if callable(getattr(cls, "_get_type_hints", None)):
hints = cls._get_type_hints()
else:
hints = get_type_hints(cls)
if name in hints:
hint = get_origin(hints[name])
if hint == ClassVar:
return False
if name in cls.inherited_backend_vars:
return False
from reflex.vars.base import is_computed_var
if name in cls.__dict__:
value = cls.__dict__[name]
if type(value) is classmethod:
return False
if callable(value):
return False
if isinstance(
value,
(
types.FunctionType,
property,
cached_property,
),
) or is_computed_var(value):
return False
return True
def check_type_in_allowed_types(value_type: Type, allowed_types: Iterable) -> bool:
"""Check that a value type is found in a list of allowed types.
Args:
value_type: Type of value.
allowed_types: Iterable of allowed types.
Returns:
If the type is found in the allowed types.
"""
return get_base_class(value_type) in allowed_types
def check_prop_in_allowed_types(prop: Any, allowed_types: Iterable) -> bool:
"""Check that a prop value is in a list of allowed types.
Does the check in a way that works regardless if it's a raw value or a state Var.
Args:
prop: The prop to check.
allowed_types: The list of allowed types.
Returns:
If the prop type match one of the allowed_types.
"""
from reflex.vars import Var
type_ = prop._var_type if isinstance(prop, Var) else type(prop)
return type_ in allowed_types
def is_encoded_fstring(value: Any) -> bool:
"""Check if a value is an encoded Var f-string.
Args:
value: The value string to check.
Returns:
Whether the value is an f-string
"""
return isinstance(value, str) and constants.REFLEX_VAR_OPENING_TAG in value
def validate_literal(key: str, value: Any, expected_type: Type, comp_name: str):
"""Check that a value is a valid literal.
Args:
key: The prop name.
value: The prop value to validate.
expected_type: The expected type(literal type).
comp_name: Name of the component.
Raises:
ValueError: When the value is not a valid literal.
"""
from reflex.vars import Var
if (
is_literal(expected_type)
and not isinstance(value, Var) # validating vars is not supported yet.
and not is_encoded_fstring(value) # f-strings are not supported.
and value not in expected_type.__args__
):
allowed_values = expected_type.__args__
if value not in allowed_values:
allowed_value_str = ",".join(
[str(v) if not isinstance(v, str) else f"'{v}'" for v in allowed_values]
)
value_str = f"'{value}'" if isinstance(value, str) else value
raise ValueError(
f"prop value for {key!s} of the `{comp_name}` component should be one of the following: {allowed_value_str}. Got {value_str} instead"
)
def validate_parameter_literals(func: Callable):
"""Decorator to check that the arguments passed to a function
correspond to the correct function parameter if it (the parameter)
is a literal type.
Args:
func: The function to validate.
Returns:
The wrapper function.
"""
@wraps(func)
def wrapper(*args, **kwargs):
func_params = list(inspect.signature(func).parameters.items())
annotations = {param[0]: param[1].annotation for param in func_params}
# validate args
for param, arg in zip(annotations, args, strict=False):
if annotations[param] is inspect.Parameter.empty:
continue
validate_literal(param, arg, annotations[param], func.__name__)
# validate kwargs.
for key, value in kwargs.items():
annotation = annotations.get(key)
if not annotation or annotation is inspect.Parameter.empty:
continue
validate_literal(key, value, annotation, func.__name__)
return func(*args, **kwargs)
return wrapper
# Store this here for performance.
StateBases = get_base_class(StateVar)
StateIterBases = get_base_class(StateIterVar)
def safe_issubclass(cls: Type, cls_check: Type | Tuple[Type, ...]):
"""Check if a class is a subclass of another class. Returns False if internal error occurs.
Args:
cls: The class to check.
cls_check: The class to check against.
Returns:
Whether the class is a subclass of the other class.
"""
try:
return issubclass(cls, cls_check)
except TypeError:
return False
def typehint_issubclass(possible_subclass: Any, possible_superclass: Any) -> bool:
"""Check if a type hint is a subclass of another type hint.
Args:
possible_subclass: The type hint to check.
possible_superclass: The type hint to check against.
Returns:
Whether the type hint is a subclass of the other type hint.
"""
if possible_superclass is Any:
return True
if possible_subclass is Any:
return False
provided_type_origin = get_origin(possible_subclass)
accepted_type_origin = get_origin(possible_superclass)
if provided_type_origin is None and accepted_type_origin is None:
# In this case, we are dealing with a non-generic type, so we can use issubclass
return issubclass(possible_subclass, possible_superclass)
# Remove this check when Python 3.10 is the minimum supported version
if hasattr(types, "UnionType"):
provided_type_origin = (
Union if provided_type_origin is types.UnionType else provided_type_origin
)
accepted_type_origin = (
Union if accepted_type_origin is types.UnionType else accepted_type_origin
)
# Get type arguments (e.g., [float, int] for Dict[float, int])
provided_args = get_args(possible_subclass)
accepted_args = get_args(possible_superclass)
if accepted_type_origin is Union:
if provided_type_origin is not Union:
return any(
typehint_issubclass(possible_subclass, accepted_arg)
for accepted_arg in accepted_args
)
return all(
any(
typehint_issubclass(provided_arg, accepted_arg)
for accepted_arg in accepted_args
)
for provided_arg in provided_args
)
# Check if the origin of both types is the same (e.g., list for list[int])
# This probably should be issubclass instead of ==
if (provided_type_origin or possible_subclass) != (
accepted_type_origin or possible_superclass
):
return False
# Ensure all specific types are compatible with accepted types
# Note this is not necessarily correct, as it doesn't check against contravariance and covariance
# It also ignores when the length of the arguments is different
return all(
typehint_issubclass(provided_arg, accepted_arg)
for provided_arg, accepted_arg in zip(
provided_args, accepted_args, strict=False
)
if accepted_arg is not Any
)